
2025

Monroe County Water Quality Study

Monroe County Planning Commission 701 Main Street, Suite 405 Stroudsburg, PA 18360-2169 (570) 517-3100 www.monroecountypa.gov

Monroe County Conservation District 8050 Running Valley Rd Stroudsburg, PA 18360 (570) 629-3060 www.mcconservation.org

Table of Contents

Section I. Materials and Methods	5
Field Chemistry Sampling	5
Laboratory Chemistry Sampling	5
	5
Macroinvertebrate Sampling	6
Habitat Analysis	
	7
Field Measurements	8
Section II. Surface Water Parameters	8
Field Measurement Data Form	9
Water Chemistry Laboratory Analysis	10
What Are Macroinvertebrates?	13
Section III. Benthic Macroinvertebrates	13
Macroinvertebrate Analysis	13
Aquatic Life Use (ALU) Attainment Benchmarks	14
Large vs. Small Stream Metric Standardization	16
Wadeable Freestone Riffle-Run Stream	17
Wadeable Multihabitat Stream	19
PA DEP Physical Habitat Evaluation Method	22
Section IV. Physical Habitat Evaluation	22
Riffle/Run Habitat Evaluation Parameters	22
Riffle/Run Habitat Evaluation Form	24
Low Gradient Habitat Evaluation Parameters	26
Multihabitat/Low Gradient Habitat Evaluation Form	28
Location Descriptions:	30
Section V. Sample Locations & Results	30
Site Summary Sheets	C
Section VI. Summary and Recommendations	40
Locations Scoring below the Aquatic Life Use Impairment Threshold	40
Additional Attainment Evaluations of Sites Designated CWF	41
Keiper Run KEIPRN02 (HQ-CWF)	43
Highlights for 2025	44

	Sites Scoring Below IBI Threshold	45
	Table 6: Sample Site Scoring Below the ALU Impairment Threshold	
	2024-2025 Comparison of Sites Scoring Below the Aquatic Life Use Threshold	45
	Recommendations	46
S	ection VII. References	47

PREPARED BY MONROE COUNTY

Board of Commissioners

John D. Christy, Chairman David C. Parker, Vice-Chairman Sharon S. Laverdure, Commissioner Robert J. Gress, Chief Clerk/Administrator

Monroe County Planning Commission Board

Annette Atkinson, Chairman Charles Vogt, Vice-Chairman Nicole Murray Roger McFadden Robert Baxter Chris Borger Rich Schlameuss James Fareri, Solicitor

Monroe County Conservation District Board

Robert Armstrong, Chairperson
Brian Winot, Vice-Chairperson
Craig Todd, Secretary
Roger McFadden, Treasurer
Sharon Laverdure, Commissioner Member
Jason Smith, Member
Donna Foulk, Member

PROJECT PARTICIPANTS

Lead Agencies

Monroe County Planning Commission

Christine Meinhart-Fritz, Director
Eric Koopman, Lead Senior Planner
Julia Sherer, Senior Environmental Planner
Nathaniel Staruch, Infrastructure Planner
Aaron Lombard, Vector Coordinator
Jeremie Schuster, GIS Analyst/Planner
Kevin Glovas, Community Planner
Kim Borger, Planner/E911 Addressing Coordinator

Monroe County Conservation District

District Manager: Kristina Heaney
Hydraulic Engineer: Michael J. Wilk, P.E.
Hydraulic Engineer: Drew Wagner, P.E.
Head Resource Conservationist: Johnny Knauff
Watershed Specialist: Charles Kelshaw
Resource Conservation Specialist: Geoff Ioannidis
Resource Conservation Specialist: Lena Campisi
Resource Conservation Specialist: John Motz

Cooperating Agencies

Pennsylvania Department of Environmental Protection (PADEP)

Entomology Consultants

Michael Bilger JB Ecological Services 100 Rabbit Hill Road Mifflinburg, PA 17844

Laboratory Services

Microbac Laboratories 1620 North Main Avenue Scranton, PA 18058

Section I. Materials and Methods

Field Chemistry Sampling

Field chemistry sampling was not conducted in 2025 due to the conductivity probe malfunctioning. Typically, a field chemistry sample would be collected using a hand-held YSI Professional Digital Sampling System (ProDSS) multiparameter water quality meter.

Laboratory Chemistry Sampling

Chemical sampling was conducted using sampling bottles and directives by Microbac Laboratories. The samples were transported on ice to their facilities via courier at the end of each sampling day. The following table shows the parameters that were collected and analyzed for each sampling location:

Table 1: Chemical testing parameters by Microbac Laboratories

Test	Units	Method	Reporting Limit (RL)
Nitrate Calculated	mg/L	EPA 353.2, Rv. 2 (1993)	0.0500
Biochemical Oxygen Demand (BOD5)	mg/L	SM 5210 B-2011	3.00
Hardness (as CaCO ₃)	mg/L	Calculation by ICP	0.999
Aluminum	mg/L	EPA 200.7, Rv. 4.4 (1994)	0.160
Calcium	mg/L	EPA 200.7, Rv. 4.4 (1994)	0.400
Iron	mg/L	EPA 200.7, Rv. 4.4 (1994)	0.0800
Magnesium	mg/L	EPA 200.7, Rv. 4.4 (1994)	0.400
Chloride	mg/L	EPA 300.0, Rv. 2.1 (1993)	0.50
Alkalinity, Total to CaCO ₃ to pH 4.5	mg CaCO ₃ /L	SM 2310 B-2011	6.0
Total Dissolved Solids (TDS)	mg/L	SM 2540 C-2011	10.0
pH	N/A	SM 4500-H+ B-2011	1.0
Ammonia as N	mg/L	SM 4500-NH3 F-2011	0.30
Total Kjeldahl Nitrogen (TKN)	mg/L	SM 4500-NH3 F-2011	1.25
Phosphorus, Total as P	mg/L	SM 4500-P E-2011	0.020
Total Organic Carbon (TOC)	mg/L	SM 5310 C-2011	0.50

Figure 1: Sample collection for lab analysis

Figure 2: Sample collection for lab analysis

Macroinvertebrate Sampling

Collection of macroinvertebrates began with delineating a 100-meter reach of each sampling location that best represented the habitat of the stream. Collection would be distributed throughout the 100-meter reach and would represent the variety of habitats shown in the bullet points below. In each case, macroinvertebrates were collected using a 12" 500 micron D-frame net that was held downstream from the substrate disturbance. The collection would be moved upstream along the 100-meter reach to limit disturbance of the study area. Six one-minute kicks were used in each of the riffle/run habitats and ten jabs or kicks were used in the multi-habitat

locations (Shull & Lookenbill, 2023).

Riffle/Run Habitat – Six samples within 100-meter reach

- Fast/Shallow
- Fast/Deep
- Slow/Shallow
- Slow/Deep

Multi-Habitat/Low Gradient Collection – Ten samples within 100-meter reach

- Cobble/Gravel
- Snag
- Coarse Particulate Organic Matter (CPOM)
- Submerged Aquatic Vegetation (SAV)
- Sand/Fine Sediment

Each sample was placed in a round, wide-mouth, plastic jar containing 95% ethanol and delivered to JB Ecological Services for macroinvertebrate identification and analysis.

Habitat Analysis

Each sampling location was assessed as riffle/run or low gradient streams depending on the habitat. Each parameter was rated on a score from 1-20; 20 being the highest score possible. (*Shull & Lookenbill*, 2023).

Riffle/Run Streams

Instream Cover
Epifaunal Substrate
Embeddedness
Velocity/Depth Regimes
Channel Alteration
Sediment Deposition
Riffle Frequency
Channel Flow Status
Condition of Banks
Bank Vegetative Protection
Grazing or Other Disruptive Pressure
Riparian Vegetative Zone

Low Gradient Streams

Epifaunal Substrate/Available Cover Pool Substrate Characterization Pool Variability Sediment Deposition Channel Flow Status Channel Alteration Condition of Banks Bank Vegetative Protection Riparian Vegetative Zone

Figure 5: Riffle/Run Stream

Figure 6: Multi-Habitat/Low Gradient

Section II. Surface Water Parameters

Field Measurements

Potential of Hydrogen (pH)

pH is an expression of the hydrogen ion concentration in water. The pH scale is used to determine the acidity or basicity of a solution on a scale of 0 to 14, with pH 7 being neutral. When the pH of a solution is below 7, the solution is acidic. If the pH of a solution is above 7, the solution is basic. pH impacts most chemical and biological process in water and different species flourish within different ranges of pH. Most aquatic organisms have an optimal pH range between 6.5 - 8. Slight changes in pH can shift community composition in streams. This is because pH alters the chemical state of many pollutants, changing their solubility, transport, and bioavailability. This can increase the exposure to and toxicity of metals and nutrients to aquatic organisms (EPA, 2018).

Temperature

Water temperature is influenced by many atmospheric and hydrologic processes, and plays a fundamental role in shaping the structure and function of aquatic systems. Even a slight change in temperature can affect aquatic organism survival, growth, reproduction, and development. The temperature of the stream is also used as the basis for classifying streams. (EPA, 2018)

Dissolved Oxygen (DO)

Dissolved oxygen refers to the concentration of oxygen gas incorporated in water. It enters the water through direct absorption from the atmosphere and is enhanced by turbulence. Sufficient DO is essential to the growth and reproduction of aerobic aquatic life. Sources from non-point or point source runoff, impoundments, treatment outfalls, and removal of riparian vegetation can impact the DO of a water body (EPA, 2018). In 25 Pa Code Chapter 93.7, the current DO criteria for flowing waters is: CWF; 7-day average 6.0 mg/L; minimum 5.0 mg/L. WWF; 7-day average 5.5 mg/L; minimum 5.0 mg/L. TSF; For the period February 15 to July 31 of any year, 7-day average 6.0 mg/L; minimum 5.0 mg/L. For the remainder of the year, 7-day average 5.5 mg/L; minimum 5.0 mg/L.

Specific Conductance

Conductivity is a measure of waters ability to pass an electrical current and is used as a general measure of water quality. Dissolved salts and other inorganic compounds conduct electrical currents so as salinity in a waterbody increases, conductivity increases. Significant changes in the conductivity could be an indicator of a discharge or other source of pollution that is influencing the aquatic system (EPA, 2016). The conductivity in the United States can range from 50 to 1500 μ S/cm, but inland freshwater streams supporting good mixed fisheries generally range from 150 to 500 μ S/cm (EPA, 2012).

Field Measurement Data Form

			Site Information	Study Fie		
			nte information	Date		
Stream ID				Time	1	
Stream Name				Air Temp		
Latitude DMS				Weather		
Longitude DMS				Studied by		
Location Description:				otanica o j	1	
		- 1	Field Chemistry	Alt	400	0
Make sure there is complete mixing	-11	Disso	lved Oxygen	Cond	ductance	Tama (90)
(similary readings across the stream)	рН	%DO	mg/L DO	(μS/cm)	TDS (mg/L)	Temp (°C)
Right Bank						
Right of Center						
Thalweg						
Left of Center						
Left Bank						
			nvertebrates Sa (12" diameter D-Frame net)	mpling		
Multihabitat (10 samples			Riffle/Ru	n (6 Samples)	
Choose 10 sites based on in stream abundance	Target	Talley	At least 1 of each flow regimes	Talley	Comments:	
Cobble/Gravel	As per	700	slow/shallow			
Snag			fast/shallow		7	
СРОМ			slow/deep			
Submerged Aquatic Veg		1-	fast/deep		7	
the second secon			Total	6	1	
Sand/Fine Sediment	i i					

Water Chemistry Laboratory Analysis

Nitrogen

Nitrogen can be found in several types of species throughout the natural environment. Through nitrification and denitrification, bacteria can convert nitrogen which can increase or decrease availability of this essential limiting nutrient in a system. Nitrification is when bacteria transform ammonia (NH₃) into nitrite (NO₂⁻) and then to nitrate (NO₃⁻), and denitrification is when bacteria convert nitrate to nitrite and then nitrogen gas. Additionally, ammonia can be transformed from ammonium in low oxygen environments. Excessive nutrients in surface water promotes eutrophication which is when algae and bacterial blooms are stimulated and causes a decrease in oxygen to other aquatic organisms. Sources such as fertilizer, effluent from treatment plants, urban stormwater runoff, and livestock waste can all contribute to an influx of nitrogen into a system (EPA, 2006). Early laboratory studies demonstrated that the lethal concentrations for a variety of fish range between 0.2 to 2.0 mg/L NH₃ with trout being the most sensitive species (EPA, 1976).

Biological Oxygen Demand (BOD)

BOD measures how much oxygen is consumed while microorganisms decompose organic matter. This directly affects the amount of dissolved oxygen available. The higher the BOD, the more rapidly oxygen is consumed. Sources of BOD can include leafy debris, dead organisms, effluent from wastewater treatment plants, urban storm water runoff, and feedlots. Generally, unpolluted natural waters have <5 mg/L BOD levels (EPA, 2006).

Total Hardness

Water hardness is caused by metallic ions, primarily calcium and magnesium, dissolving in water. Other metals such as iron, strontium, and manganese can also contribute to the hardness. Natural contributors of water hardness include dissolved limestone, however, inorganic chemical industries and abandoned mines can also contribute to increased water hardness (EPA, 1986). According to the USGS Water Science School (n.d.), general classification of waters are:

Soft Water 0 - 60 mg/L

Moderately Hard Water 60 - 120 mg/L

Hard Water 120 - 180 mg/L

Very Hard Water 180 mg/L and up

Aluminum

Aluminum is a natural element found in rocks and soils that can enter the water through natural processes. It can also be released by activities like mining and industrial processes that use aluminum. Elevated levels of aluminum in surface water can affect aquatic organism's ability to regulate ions and inhibit respiratory function. According to 25 Pa Code Chapter 93.8c, the water quality criteria for toxic substances maximum concentration is 750 μ g/L. According to the Final Aquatic Life Ambient Water Quality Criteria for Aluminum, the concentration varied as a function of the sites pH, DOC, and total hardness but ranged between 1-4,800 μ g/L (EPA, 2018).

Calcium

Calcium is a naturally occurring element in water bodies due to its abundance in the earth's crust. It enters waterways through the erosion process of sedimentary rocks such as limestone. It is a contributor of water hardness and can influence pH because of its buffering quality. Rivers generally contain 1-2 mg/L calcium. In limestone areas, rivers may contain calcium concentrations as high as 100 mg/L (Lenntech, 2020).

Total Kjeldahl Nitrogen

T.K.N is the sum of free-ammonia and organic nitrogen compounds. Samples in the field are preserved by the addition of Sulfuric Acid (H₂SO₄) (EPA, 1993).

Iron

Iron is the fourth most commonly found element in the earth's crust which enters waterbodies in varying quantities depending on the surrounding geological formations and hydrological processes. In the aquatic environment there are two types of iron of most concern ferrous (Fe²⁺) and ferric (Fe³⁺), although other forms can be found. Ferrous iron can originate from mining operations and inorganic wastewater and can persist in anaerobic conditions. Ferric iron is highly insoluble and can originate from industrial wastes or mine drainage (EPA, 1976).

Magnesium

Magnesium is the eighth most abundant element found in the earth's crust and is frequently used in manufacturing, fertilizer, and animal feed. Along with calcium, it contributes to the hardness and salinity of waterbodies (USGS, 2001).

Chloride

Chlorides are salts resulting from the combination of the gas chlorine with a metal. The major anthropogenic sources of chloride are deicing salts, urban and agricultural runoff, and effluent from wastewater plants (EPA, 1988). The EPA maximum criteria for chloride is 250 mg/L (25 Pa. Code § 93.7).

Total Organic Carbon (TOC)

TOC is the measure of the total amount of carbon in organic compounds in a water sample (Whitehead, 2020). This measurement is important to characterize the amount of oxygen being used by microorganisms thereby depleting the oxygen availability of other aquatic organisms. The samples collected in the field were preserved by the addition of 1 mL of sulfuric acid (H₂SO₄).

Total Alkalinity

Alkalinity is the measure of the capacity of water to neutralize acids. Alkaline compounds do this by combining with hydrogen ions to increase the pH of the solution. Alkalinity is influenced by geologic formations, salts, plant activity, and wastewater effluent. The ability for water to resist drastic pH change is crucial to the survival of aquatic life (EPA, 2006). The minimum criteria from EPA for alkalinity is a minimum of 20 mg/L as CaCO₃, except where natural conditions are less. If so, the discharge to the waterway should not further reduce the alkalinity of the receiving waters (25 Pa. Code § 93.7).

Total Dissolved Solids (TDS)

Total Solids refers to the suspended or dissolved matter that is left over after the sample of water is evaporated. Total Dissolved Solids are determined after the matter is filtered through a 2 μ m or smaller pore size filter which retains the suspended particles. Regular monitoring can assist in determining increased erosion or sedimentation influx into the waterway (EPA, 2006). The criteria for TDS is 500 mg/L as a monthly average or a maximum value of 750 mg/L (25 Pa. Code § 93.7).

Total Phosphorus

Total phosphorus refers to the dissolved and particulate forms of phosphorus in a water sample. Phosphorus is an essential nutrient that can enter waterbodies in numerous ways. Fertilizers, waste treatment effluent, and agricultural/urban runoff are a few examples of how phosphorus can enter a system. Phosphorus tends to attach to soil particles making them easily transported during high runoff events. Excessive nutrients in surface water promotes eutrophication which is when algae and bacterial blooms are stimulated and causes a decrease in oxygen to other aquatic organisms (EPA, 2006).

Section III. Benthic Macroinvertebrates

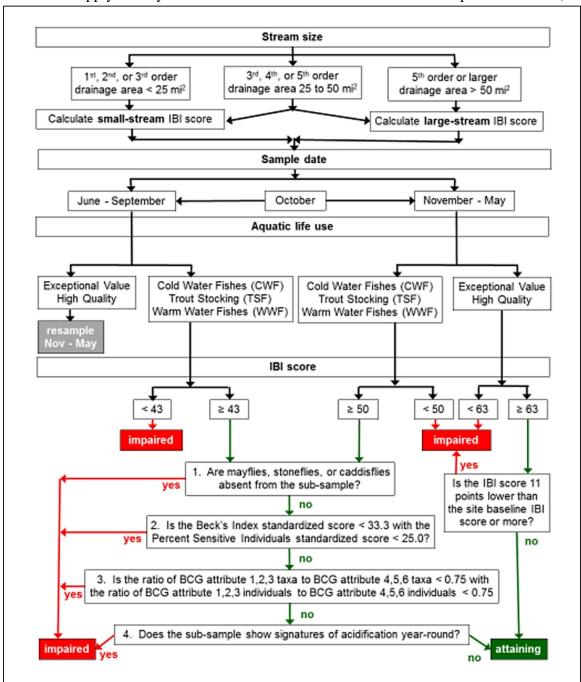
What Are Macroinvertebrates?

The organisms collected during the water quality study are called benthic macroinvertebrates. Benthic defines the zone in which they occupy which is on, in, or near the stream bottom. Macroinvertebrates are animals without a backbone and large enough to see with the naked eye. Macroinvertebrates are an important link in the food web between producers and higher consumers such as fish. They are commonly used to study water quality for several reasons: They are fairly easy to sample and identify, they are sensitive to pollution and changes in their

habitats, they are common in most streams and rivers, and they offer an indicator of water quality over time due to their relatively long life cycle (Stroud Water Research, 2020).

Macroinvertebrates can be divided into several groups based on pollution tolerance. Ephemeroptera (mayflies), Plecoptera (stoneflies), and Tricoptera (caddisflies) and many others can be an indicator of the best water quality because they are intolerant of frequent or prolonged pollution in their habitats. Macroinvertebrates such as aquatic worms and blood midge larvae can tolerate a significant amount of pollution but can also live in a broader range of quality conditions. The ongoing collection of macroinvertebrate populations can indicate drastic change in conditions, offer a clearer picture of water quality, and provide overall environmental oversight in a stream (Penn State Extension, 2020).

Figure 7: Collecting macroinvertebrates.


Chalfant (2012) defines how PADEP assigns numeric pollution tolerance values (PTV) to most macroinvertebrates found in Pennsylvania in *A benthic index of biotic integrity for wadeable freestone streams in Pennsylvania*. The values range from zero to ten, with ten representing a relative tolerance to pollution. Most of the values reflect the response to pollution related to organic enrichment and sedimentation, and not necessarily reflective of other types of pollution such as low pH related to stream acidification.

Macroinvertebrate Analysis

The PA Department of Environmental Protection (PADEP) has designed several assessment methods for Aquatic Life Use determinations based on the type of biological attributes and gradient conditions of a stream. For the Monroe County study sampling locations, the wadeable freestone riffle-run stream macroinvertebrate assessment method and the wadeable multihabitat stream macroinvertebrate assessment method were applied and described below. The published protocols and equations are designed to find the index of biotic integrity (IBI). This index helps to quantify the health of the stream and assist in management decisions (Shull & Pulket, 2023).

Aquatic Life Use (ALU) Attainment Benchmarks

PADEP implemented a multi-tiered benchmark decision flowchart (Figure 8) for the decision process of assessing if a wadeable, freestone, or riffle-run stream has achieved its attainment. The simplified matrix should guide most decisions however; situations exist where the simplified matrix will not apply exactly as outlined. For further clarification on the Aquatic Life Uses, 25

Pa. Code § 93 offers the water quality criteria defined by the Pennsylvania Water Quality Standards.

Figure 8: Aquatic Life Use Simplified Assessment Schematic (Shull & Pulket, 2023).

Considerations for the stream that must be made prior to analyzing the IBI are shown in Figure 8.

- **Stream Size:** This is based on considerations given by DEP in the *Assessment Methodology* for Rivers and Streams (2023) and discussed above.
- Sample Date: The Monroe County water quality study is conducted annually between April and May
- Aquatic Life Use: The stream designated use is defined in 25 Pa. Code § 93.9 and the existing use is defined in PADEP's *Existing Use Classification* (2023). These are noted prior to approaching this benchmark.

For samples collected in Exceptional Value (EV) or High Quality (HQ) streams, a score of \geq 63 results in ALU attainment if the IBI score is not lower than the baseline when available. A score of < 63 means that the stream was potentially not attaining its Aquatic Life Use when it was sampled. For streams designated Cold Water Fishery (CWF), Trout Stocked Fishery (TSF), or Warm Water Fishery (WWF), an IBI score < 50 means that the stream was potentially not attaining its Aquatic Life Use when it was sampled. Additionally, the following evaluations should be used to determine attainment in CWF, WWF, and TSF, regardless of the IBI (Shull & Pulket, 2023).

- 1. Are mayflies, stoneflies, or caddisflies absent from the sub-sample? These organisms are typically found in most healthy streams therefore if any or all of these orders are absent, it could indicate some sort of impact to the stream. Note that this question does not have to be applied to samples from larger streams and samples collected between June and September, but must be applied to small stream samples collected between November and May.
- 2. Is the standardized metric score for the Beck's Index metric < 33.3 with the standardization metric score for the Percent Sensitive Individuals metric < 25.0? This serves as a double check that the sample has substantial richness and abundance of the most sensitive organism.
- 3. Is the ratio of Biological Condition Gradient (BCG) attribute 1, 2, 3 taxa to BCG attribute 4, 5, 6 taxa < 0.75 with the ratio of BCG attribute 1, 2, 3 individuals to BCG attribute 4, 5, 6 individuals < 0.75? This evaluates the balance of pollution tolerant organisms with sensitive organisms in terms of taxonomic richness and organismal abundance. This question must be applied to small-stream samples collected between November and May, but does not have to be applied to samples from larger streams and samples collected between June and September.
- 4. **Does the sub-sample show signatures of acidification year-round?** The primary acidification signatures in a sub-sample include low mayfly abundance and low mayfly diversity (i.e., scarce mayfly individuals and few mayfly taxa), especially when combined with high abundance of Amphinemura and/or Leuctra stoneflies, occasionally combined with high abundance of Simuliidae and/or Chironomidae individuals. This information can be difficult to determine if low pH conditions are natural, so sampling water chemistry and/or fish communities can inform the assessment. With this protocol, PADEP will only list impaired sites that show persistent acidification signatures year-round (Shull & Pulket, 2023).

Large vs. Small Stream Metric Standardization

To account for differences in habitat and water quality found in large and small streams, different standardization values are used for the above mentioned metrics. Table 2 provides the standardization values used in small and large stream evaluations. Generally, the small stream values are used for first, second, and third order streams draining less than 25 mi², while larger stream values are appropriate for fifth and larger streams draining more than 50 mi². PADEP does not set a single cutoff for drainage area or stream order, and offers other screening considerations when making an assessment decision (Shull & Pulket, 2023).

Table 2: Metric standardization values for small and large streams (Shull & Pulket, 2023).

Metric	Metric Standardization Values									
Metric	Smaller Streams	Larger Streams								
Total Taxa Richness	33	31								
EPT Taxa Richness	19	16								
Beck's Index	38	22								
Hilsenhoff Biotic Index	1.89	3.05								
Shannon Diversity	2.86	2.86								
Percent Sensitive Individuals	84.5	66.7								

Table 3 shows the process for index calculations to ultimately obtain an IBI for each sampling site. The averaged sum of these specific metric equations constructs an IBI, which then can be related to reflect the ecology and impacts to the aquatic community being studied.

Table 3: Index calculation process for freestone riffle/run streams (Shull & Pulket, 2023).

Metric	Standardization Equation (using small-stream standardization values)	Standardized Metric Score	Adjusted Standardized Metric Score Maximum = 100	
Total Taxa Richness	(Observed value / 33)*100			
EPT Taxa Richness	(Observed value / 19)*100			
Beck's Index	(Observed value / 38) *100			
Hilsenhoff Biotic	[(10-observed value) / (10-			
Index	1.89)] *100			
Shannon Diversity	(Observed / 2.86)*100			
Percent Sensitive	(Observed value / 84.5)*100			
Individuals				
	Average of adjusted standardized	metric score	s = IBI Score =	

Wadeable Freestone Riffle-Run Stream

The metrics used to evaluate the macroinvertebrate population in freestone riffle-run streams exhibited a strong ability to distinguish between pristine and heavily impacted conditions while measuring different aspects of the benthic macroinvertebrate communities.

Freestone riffle/run stream macroinvertebrate collection is conducted with a D-framed net with 500 µm mesh. A 100-meter reach is chosen which best represents the ideal habitats describes in the methods section. Each of the six kicks disturbs 1 m² of substrate immediately upstream of the net to an approximate depth of 10 cm. The kicks are completed from downstream to upstream to avoid disturbance (Shull & Lookenbill, 2023). Once the sampling is complete, each sample is composited into one container preserved with 95% ethanol in the field and transported to the contracted entomologist for enumeration and identification.

The following metric descriptions are from Shull & Pulket (2023) Wadeable Freestone Riffle-run Stream Macroinvertebrate Assessment Method in PA DEPs Assessment Methodology for Rivers and Streams:

"Total Taxa Richness

This metric is the count of the total number of taxa in a sub-sample. As anthropogenic stress increases on a stream ecosystem, it is expected that the total taxa will decrease while generally increasing the dominance of a few pollutant tolerant taxa.

EPT Taxa Richness

EPT taxa richness metric is the count of the number of taxa belonging to the orders Ephemeroptera, Plecoptera, and Trichoptera (EPT) in a sub-sample. The aquatic life stages of these three insect orders are generally considered sensitive to, or intolerant of, many types of pollution (Lenat and Penrose 1996), although sensitivity to different types of pollution varies among taxa in these insect orders. The version of this metric used here only counts EPT taxa with pollution tolerance values (PTVs) of 0 to 4, excluding a few of the most tolerant mayfly and caddisfly taxa. This metric is expected to decrease in value with increasing anthropogenic stress to a stream ecosystem, reflecting the loss of taxa from these largely pollution-sensitive orders.

Modified Beck's Index (Version 3)

Modified Beck's index is a weighted count of taxa with a pollution tolerance value of 0, 1, or 2. The metric is expected to decrease as anthropogenic stress is increased. It should be noted that the version of the Beck's Index metric used for riffle/run evaluations, although similar in name and concept, differs slightly in its calculation from the Beck's Index used in DEP's multihabitat protocol for assessing biological condition of low gradient, pool-glide type streams.

Shannon Diversity

This index measures taxa abundance and evenness in the sub-sample by dividing the # of individuals in a taxon by the total # of individuals in the sub-sample and then multiplying by the natural logarithm of this proportion. This is done for all taxa in the sub-sample; the products are then summed and the answer multiplied by -1.

$$=-1\left(\sum_{i=1}^{\mathsf{Rich}}[(\mathsf{n}/\mathsf{N})\;\mathit{ln}(\mathsf{n}/\mathsf{N})]\right)$$

Where ni = the number of individuals in each taxon (relative abundance); N = the total number of individuals in a sub-sample; and Rich = the total number of taxa in a sub-sample (total taxa richness).

Hilsenhoff Biotic Index

This community composition and tolerance metric is calculated as an average of the number of individuals in a sub-sample, weighted by pollution tolerance values. The index increases with ecosystem stress and reflects increasing dominance of pollution tolerant organisms.

Percent Sensitive Individuals

This community composition and tolerance metric is the percentage of individuals with pollution tolerance values of 0 to 3 in a sub-sample and is expected to decrease in value with increasing anthropogenic stress to a stream ecosystem, reflecting loss of pollution-sensitive organisms." (Shull & Pulket 2023)

Wadeable Multihabitat Stream

The metrics used to evaluate the macroinvertebrate population in multihabitat streams exhibited a strong ability to distinguish between pristine and heavily impacted conditions of various low gradient habitats while measuring different aspects of the benthic macroinvertebrate communities.

Multihabitat stream macroinvertebrate collection is conducted with a D-framed net with 500 μ m mesh. A 100-meter reach is chosen which best represents the five habitat types described in the methods section and in Table 4 (Shull & Lookenbill, 2023). Once the ten samples are obtained, each sample is composited into one container preserved with 95% ethanol in the field and transported to the contracted entomologist for enumeration and identification (Shull & Lookenbill, 2023).

Table 4: Habitat Types and Field Sampling Techniques (Shull & Lookenbill, 2023).

Habitat Type	Description	Sample Technique
Cobble/Gravel Substrate	Stream bottom areas consisting of mixed gravel and larger substrate particles.	Place the net on the substrate near the downstream end of an area of gravel or larger substrate particles and simultaneously pushing down on the net while pulling it in an upstream direction with adequate force to dislodge organisms.
Snag	Submerged sticks, branches, and other woody debris that appears to have been submerged long enough to be adequately colonized.	The net is placed immediately downstream of the snag in an area where water is flowing; The snag is then kicked in a manner such attached organisms are dislodged.
Coarse Particulate Organic Matter (CPOM)	Mix of plant parts (leaves, bark, twigs, seeds, etc.) that have accumulated on the stream bottom in "depositional" areas of the stream channel.	Pass the net along a 30in path through the accumulated organic material to collect the material and its associated aquatic macroinvertebrates.
Submerged Aquatic Vegetation (SAV)	Rooted aquatic macrophytes.	Draw the net in an upstream direction along a 30in path through the vegetation; Efforts should be made to avoid collecting stream bottom sediments.
Sand/Fine Sediment	Stream bottom areas that are composed primarily of sand, silt, and/or clay.	Bump and tap the net along the substrate along a 30in path.

The following metrics and analyses are from Shull and Pulket (2023) wadeable multihabitat stream macroinvertebrate assessment method in PADEP's *Assessment Methodology for Rivers and Streams*:

"Total Taxa Richness

Total taxa richness is similar to the freestone riffle/run metric. This metric is the count of the total number of taxa in a sub-sample.

EPT Taxa Richness

Similar to the freestone riffle/run metric, this metric is the count of the number of taxa belonging to the orders Ephemeroptera, Plecoptera, and Trichoptera (EPT) in a sub-sample. The aquatic life stages of these three insect orders are generally considered sensitive to, or intolerant of, many types of pollution (Lenat and Penrose 1996), although sensitivity to different types of pollution varies among taxa in these insect orders. The version of this metric used here only counts EPT taxa with pollution tolerance values (PTVs) of 0 to 4, excluding a few of the most tolerant mayfly and caddisfly taxa. This metric is expected to decrease in value with increasing anthropogenic stress to a stream ecosystem, reflecting the loss of taxa from these largely pollution-sensitive orders.

Beck4

Beck4 is a weighted taxa richness measure. It is based on Hilsenhoff Biotic Index Scores which measures the pollution tolerance of an organism on a scale of zero to ten, where the organisms' tolerance level decreases with score. This is chosen because it better represents low-gradient streams. For Beck4, taxa with a HBI score of 0 or 1 are given 2 points and HBI scores of 2, 3, or 4 are given 1 point.

Shannon Diversity

This index measures taxa abundance and evenness in the sub-sample by dividing the # of individuals in a taxon by the total # of individuals in the sub-sample and then multiplying by the natural logarithm of this proportion. This is done for all taxa in the sub-sample; the products are then summed and the answer multiplied by -1.

$$=-1\left(\sum_{i=1}^{\text{Rich}}[(n_i/N) \ln(n_i/N)]\right)$$

Where ni = the number of individuals in each taxon (relative abundance); N = the total number of individuals in a sub-sample; and Rich = the total number of taxa in a sub-sample (total taxa richness).

Number of Caddisfly Taxa

The metric is the sum of the Caddisfly taxa present in the subsample.

Number of Mayfly Taxa

The metric is the sum of the Mayfly taxa present in the subsample.

Table 5 shows the process for index calculations to ultimately obtain an IBI for each sampling site. The sum of these specific metric equations constructs an IBI, which then can be related to reflect the ecology and impacts to the aquatic community being studied.

Table 5: Index calculation process for multihabitat streams (Shull & Pulket, 2023).

Metric	Equation	Observed Metric Value	Normalized Metric Score	Adjusted Metric Score Maximum = 100						
Total Taxa Richness	(Observed / 31)*100									
EPT Taxa Richness	(Observed / 17)*100									
Beck4	(Observed / 22)*100									
Shannon Diversity	(Observed / 2.43)*100									
# of Caddisfly Taxa	(Observed / 11)*100									
# of Mayfly Taxa	(Observed / 6)*100									
	Average of adjusted standardized metric scores = IBI Score =									
The benchmark for	r Aquatic Life Use attain	ment in multihabit	at streams is an	IBI score of 55*						

Aquatic Life Use Attainment Benchmarks

The benchmark for Aquatic Life Use attainment in multihabitat streams is 55 therefore, if the score is \geq 55 the stream has reached attainment, and if the score is \leq 55 the sample reach has not achieved attainment." (Shull & Pulket, 2023)

Section IV. Physical Habitat Evaluation

PA DEP Physical Habitat Evaluation Method

The habitat assessment is a modification of the habitat evaluation methods from the USEPA *Rapid Bioassessment Protocols*. It is used to evaluate key physical characteristics of the available habitat and conditions to aquatic biota which impacts the community structure and composition. The habitat assessment scores on the site summary sheets are calculated based off an overall total scored at each site of the 12 metrics below. The threshold for wadeable streams ALU assessment impairment is 140 or less. The couplet of embeddedness + sediment deposition, and the couplet of the condition of banks + vegetative protection are calculated to determine the impairment threshold. The impairment threshold for the two couplets is a score of 24 or less for either combination. The following descriptions of the habitat assessment parameters are directly from Shull and Lookenbill (2023) *Water Quality Monitoring Protocols for Streams and Rivers* and are followed by examples of the data sheets from the protocols:

Riffle/Run Habitat Evaluation Parameters

- 1. "Instream Fish Cover Evaluates the percent makeup of the substrate (boulders, cobble, other rock material) and submerged objects (logs, undercut banks) that provide refuge for a variety of fish including both large bodied pelagic species as well as smaller benthic specialists.
- 2. **Epifaunal Substrate** Evaluates riffle quality, i.e., areal extent relative to stream width and dominant substrate materials (cobble, boulders, gravel) that are present.
- 3. **Embeddedness** Evaluates the extent to which rocks (gravel, cobble, and boulders) and snags are covered or sunken into the silt, sand, or mud of the stream bottom. The rating of this parameter may be variable depending on where the observations are taken. To avoid confusion with sediment deposition (another habitat parameter), observations of embeddedness should be taken in the upstream and central portions of riffles and cobble substrate areas.
- 4. **Velocity Depth Regimes** Evaluates the presence/absence of four velocity/depth regimes (fast-deep, fast-shallow, slow-deep, and slow-shallow). Generally, shallow is < 0.5m and slow is < 0.3m/sec.
- 5. **Channel Alteration** Evaluates the extent of channelization or dredging, but can include any other large-scale changes in the shape of the stream channel that would be detrimental to the habitat. Channel alteration is present when artificial embankments, riprap, and other forms of artificial bank stabilization or structures are present; when the stream is very straight for significant distances; when dams and bridges are present; and when other such changes have occurred.
- 6. **Sediment Deposition** Estimates the extent of sediment effects in the formation of islands, point bars, and pool deposition. Deposition is typically evident in areas that are obstructed by natural or manmade debris and areas where the stream flow decreases, such as bends.

- 7. **Riffle Frequency** Estimates the frequency of riffle occurrence based on stream width and thus the heterogeneity occurring in a stream. For riffle/run prevalent streams where distinct riffles are uncommon, a run/bend ratio is used as a measure of meandering or sinuosity.
- 8. **Channel Flow Status** Estimates the areal extent of exposed substrates due to water level or flow conditions. The flow status will change as the channel enlarges (e.g., aggrading stream beds with actively widening channels) or as flow decreases as a result of dams and other obstructions, diversions for irrigation, or drought. In riffle/run prevalent streams, riffles and cobble substrate are exposed; in low gradient streams, the decrease in water level exposes logs and snags, thereby reducing the areas of good habitat.
- 9. **Condition of Banks** Evaluates the extent of bank failure, signs of erosion, or the potential for erosion. The stream bank is defined as the area from the water's surface to the bankfull delineation. Steep banks are more likely to collapse and suffer from erosion than are gently sloping banks, and are therefore considered to be unstable. Signs of erosion include crumbling, unvegetated banks, exposed tree roots, and exposed soil.
- 10. **Bank Vegetative Protection** Estimates the extent of stream bank that is covered by plant growth providing stability through well-developed root systems. The stream bank is defined as the area from the water's surface to the bankfull delineation. This parameter supplies information on the ability of the bank to resist erosion as well as some additional information on the uptake of nutrients by the plants, the control of instream scouring, and stream shading. This parameter is made more effective by defining the native vegetation for the region and stream type (i.e., shrubs, trees, etc.). In some regions, the introduction of exotics has virtually replaced all native vegetation. The value of exotic vegetation to the quality of the habitat structure and contribution to the stream ecosystem must be considered in this parameter.
- 11. **Grazing or Other Disruptive Pressures** Evaluates disruptions to surrounding land vegetation due to common human activities, such as crop harvesting, lawn care, excavations, fill, construction projects, and other intrusive activities.
- 12. **Riparian Vegetative Zones** Estimates the width of natural vegetation from the edge of the stream bank out through the riparian zone. Narrow riparian zones occur when roads, parking lots, fields, lawns, bare soil, rocks, or buildings are near the stream bank. Residential developments, urban centers, golf courses, and rangeland are the common causes of anthropogenic degradation of the riparian zone. Conversely, the presence of "old field" (i.e., a previously developed field not currently in use), paths, and walkways in an otherwise undisturbed riparian zone may be judged to be inconsequential to altering the riparian zone and may be given relatively high scores." (Shull & Lookenbill, 2023)

Riffle/Run Habitat Evaluation Form

	Pny	SIC	II Ha	bitat E	/aiu	tioi	1 -0	rm re	or K	ITTIE/I	Run	Pre	alence	•					
Waterbody Name:				G	IS Ke	y (YY	YYMN	IDD-hh	mm-U	ser):									
Location:							1.												
Investigators:	_	0.00			_	10000	ļC	ompl	eted	By:		and the same of		1					
Parameter			ptima				bopti					rgina				Poor			
1. Instream Cover' (fish)		submerged logs, h				ole, o		er stat		cobbl habita availa desira	e, or e at; hal ability able.	other bitat	directive.	Less than 10% mix of boulder, cobble, or oth stable habitat; lack of habitat is obvious.				the	
A 04-100-20 MILE	THE RESERVE OF THE PERSON NAMED IN	W. T.		17 16	THE PARTY NAMED IN	10115		12	11	10		8	7 6	5	4	3	2	1	
'2. Epifaunal Substrate' (riffle quality)	run; riffle is as wide as stream and length extends two times the width of stream;				strea than abur boul	stream but length is less I than two times width; abundance of cobble; boulders and gravel common.				as str is les strea large	ng; riff ream is thar m wid bould lock pr	te no and it 2 tir th; gi ders a evale	t as wide ts length nes the ravel or	boul prev lacki	prevalent; cobble lacking.				
	-			17 16	_	_		12		10			7 6	5	4	3	2	1	
"3. Embeddedness" (evaluate in upstream & central portions of riffles)	bould	der pa	unde	and s are 0- d by fine	boul 50%	der p	articl ound	e, and es are ed by	25-	bould	surro	rticle	and s are 50- d by fine	more surre	der p	n 75% ed by	es are	200	
	20	19	18	17 16	15	14	13	12	11	10	9	8	7 6	5	4	3	2	1	
4. Velocity/Depth Regimes¹	All four velocity/depth regimes present (slow- deep, slow shallow, fast- deep, fast shallow)				Only 3 of the 4 regimes present if fast-shallow is missing, score lower than if missing other regimes.)								(usually slow-deep).						
	20	19	18	17 16	15	14	13	12	11	10	9	8	7 6	5	4	3	2	1	
5. Channel Alteration ² (only include downstream alteration when affecting reach)	No channelization or dredging present.				pres of br evid char dred 20 yr but r	present, usually in areas of bridge abutments; evidence of past				and 40 to 80% of stream reach channelized and disrupted.					Banks shored with gabion or cement ove 80% of the stream rea channelized and disrupted.				
	-		-3.7	17 16		_		12	-	10		8	7 6	5	4		2	1	
*6. Sediment Deposition ² (evaluate in pools & depositional areas)	of islands or point bars and less than 5% of the bottom affected by sediment deposition.			bar i from 30% affec	bar information, mostly from coarse gravel; 5- 30% of the bottom affected; slight deposition in pools.				deposits at obstruction, construction and bends,				 development; more that 50% of the bottom changing frequently; pools almost absent du to substantial sediment 						

Note: Wadeable couplet scores only calculated if the Wadeable Riffle-Run Protocol (Chapter 3.1) is used. Semiwadable couplet score only calculated if Semiwadeable Large River Protocol (Chapter 3.4) is used.

^{*}WADEABLE COUPLET SCORE (EMBEDDEDNESS + SEDIMENT DEPOSITION) —

[†]SEMIWADEABLE TRIPLET SCORE (INSTREAM COVER + EPIFANUAL SUBSTRATE + EMBEDDEDNESS)

Note: Wadeable couplet scores only calculated if the Wadeable Riffle-Run Protocol (Chapter 3.1) is used. Semiwadable triplet score only calculated if Semiwadeable Large River Protocol (Chapter 3.4) is used.

Parameter		Optimal			optimal			Margir		-		Poor		
7. Riffle Frequency ² (riffle quantity; consider run:bend ratio)	relatively distance divided t the strea	between by the wid	t; riffles ith of s 5 to 7;	infrequent between r	iffles divide of the strea	ed by	bottom some h betwee the wid	contou abitat; n riffles	rs provi distanc divide e strear	ide e d by	General shallow habitat; between the width >25.	riffles; distand riffles	poor ce divid	ed b
E.	20 19	18 1	7 16	15 14	13 12	11	10	9 8	7	6	5 4	3	2	1
8. Channel Flow Status ²	both low minimal	aches ba er banks amount o substrate	and of	available of c	>75% of the channel; or hannel is exposed	0	availab riffle su		nel and s are		Very little channel present pools.	and m	ostly	
	20 19	18 1	7 16	15 14	13 12	11	10	9 8	7	6	5 4	3	2	1
Banks ³ (edge of water to bankfu delineation)		e of erosi ure.	on or		, small area ostly heale			of bank reas of			areas; "r frequent sections side slop bank has scars.	along and b bes, 60	straig ends; 0-100°	on
LDB	10	9	8	7	6		5	4		3	2		1	
Total RDB	10	9	8	7	6		5	4		3	2		1	
**10. Bank Vegetative Protection ³ (edge of water to bankfu delineation)	More that stream b //covered	ank surf	aces	A STATE OF THE RESIDENCE OF THE PARTY OF THE	the stream ices covere tion.		bank s	6 of the urfaces etation.	covere		Less tha stream to covered	ank s	urface	s
LDB	10	9	8	7	6		5	4		3	2		1	
Total RDB	10 2500	9	8	7	6		5	4		3	2		1	
11. Grazing or Other Disruptive Pressure ³ (bankfull through riparian	through mowing	is minima	r al or not	not affecti	evident bu	t	patche	ion obv s of bar croppe	e soil o	r	Disruption bank very high; very	getatio getatio	n is v	
zone)	allowed naturally	to grow	Il plants		nt; more th f the poten ble height	an	vegeta than or potenti		nmon; l of the stubble		been rer inches o stubble l	r less	in ave	
zone)	allowed	to grow	Il plants	one-half o	nt; more th f the poten ble height	an	vegeta than or potenti	tion con ne-half o al plant	nmon; l of the stubble		been rer inches o	r less i height.	in ave	
zone) LDB Total RDB	allowed naturally	o grow 9 9	8	one-half o plant stubl remaining 7 7	nt; more th f the potent ble height 6	an tial	vegeta than or potenti height 5	tion con ne-half o al plant remaini 4	nmon; I of the stubble	3	been rer inches o stubble l	r less height.	1 1	rage
LDB Total RDB 12. Riparian Vegetative Zone ³ (bankfull	allowed naturally 10 Width or >18 met activities lots, road	9 9 riparian ers; hum i (i.e., pai dbeds, cl	8 zone an king ear- ops)	one-half o plant stubl remaining 7 7 Width of ri 12-18 met activities h	nt; more th f the poten ole height	e n	vegeta than or potenti height 5 Width of 12 met activitie	tion con ne-half o al plant remaini 4	nmon; I of the stubble ng. an zone nan impact	3 3 e 6-	been rer inches o stubble l	r less height.	1 1 an zor no ation o	rag
zone) LDB	allowed naturally 10 Width or >18 met activities lots, roacuts, law have not	9 9 riparian ers; hum i (i.e., pai dbeds, cl	8 zone an king ear- ops)	one-half o plant stubl remaining 7 7 Width of ri 12-18 met activities h	nt; more the fithe potent ble height 6 6 parian zone ers; humar ave impac	e n	vegeta than or potenti height 5 Width of 12 met activitie	tion con ne-half c al plant remaini 4 of riparia ers; hur es have	nmon; I of the stubble ng. an zone nan impact	3 3 e 6-	been rer inches of stubble I 2 2 Width of meters; riparian	r less height. f riparia little or vegeta n activ	1 1 an zor no ation o	rag

^{**} WADEABLE COUPLET SCORE (CONDITION OF BANKS + BANK VEGETATIVE PROTECTION) -

TOTAL HABITAT SCORE

¹ Reach scale: Evaluate parameter within the immediate vicinity of biological sampling reach.

² Expanded scale Evaluate parameter within sampling reach and at least 100m UPS of sampled reach, longer if visual extent allows.

³ Macro scale: Evaluate parameter based on expanded scale; can be extended further to account for characteristics within representative reach.

Low Gradient Habitat Evaluation Parameters

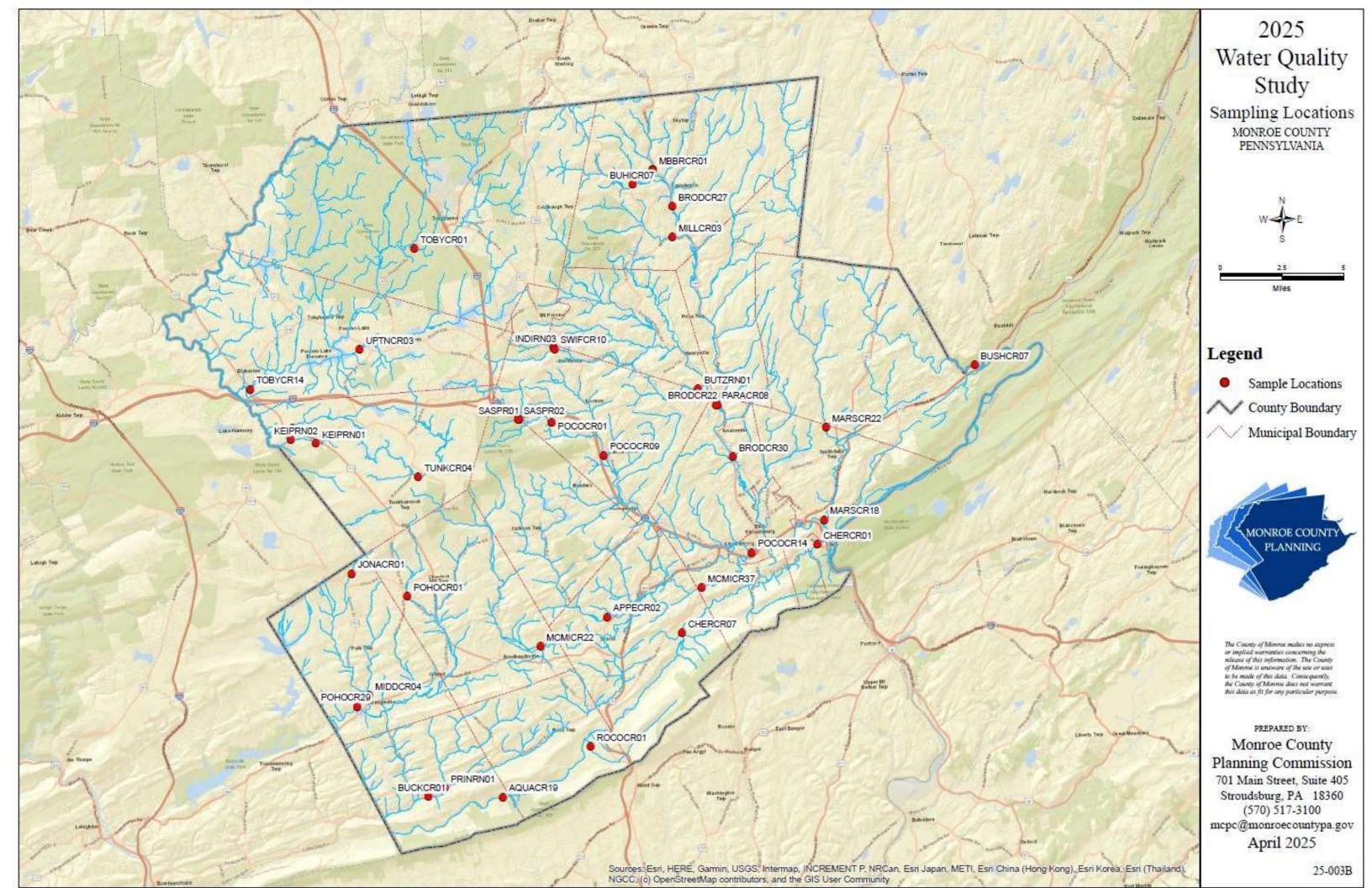
The habitat assessment scores on the site summary sheets are calculated based off an overall total scored at each site of the 9 metrics below, the couplet of pool substrate characterization + sediment deposition, and the couplet of bank stability + bank vegetative protection. The threshold for low gradient streams ALU assessment impairment is 105 or less. The impairment threshold for the two couplets is a score of 20 or less for either combination.

- 1. "Epifaunal Substrate/Available Cover Evaluates the relative quantity and variety of natural structures in the stream, such as large rocks, fallen trees, logs and branches, and undercut banks. Evaluates the percent makeup of the substrate (boulders, cobble, other rock material) and submerged objects (logs, undercut banks) that provide refuge for a variety of fish including both large bodied pelagic species as well as smaller benthic specialists.
- 2. **Pool Substrate Characterization** Evaluates the type and condition of bottom substrates found in pools. Firmer sediment types (e.g., gravel, sand) and rooted aquatic plants support a wider variety of organisms and are scored higher than a pool substrate dominated by mud or bedrock and no plants.
- 3. **Pool Variability** Evaluates the overall mixture of pool types found in streams, according to size and depth (large-shallow, large-deep, small-shallow, and small-deep).
- 4. **Sediment Deposition** Estimates the extent of sediment effects in the formation of islands, point bars, and pool deposition. Deposition is typically evident in areas that are obstructed by natural or manmade debris and areas where the stream flow decreases, such as bends.
- 5. Channel Flow Status Estimates the areal extent of exposed substrates due to water level or flow conditions. The flow status will change as the channel enlarges (e.g., aggrading stream beds with actively widening channels) or as flow decreases as a result of dams and other obstructions, diversions for irrigation, or drought. In riffle/run prevalent streams, riffles and cobble substrate are exposed; in low gradient streams, the decrease in water level exposes logs and snags, thereby reducing the areas of good habitat.
- 6. **Channel Alteration** Evaluates the extent of channelization or dredging, but can include any other large-scale changes in the shape of the stream channel that would be detrimental to the habitat. Channel alteration is present when artificial embankments, riprap, and other forms of artificial bank stabilization or structures are present; when the stream is very straight for significant distances; when dams and bridges are present; and when other such changes have occurred.
- 7. **Condition of Banks** Evaluates the extent of bank failure, signs of erosion, or the potential for erosion. The stream bank is defined as the area from the water's surface to the bankfull delineation. Steep banks are more likely to collapse and suffer from erosion than are gently

- sloping banks, and are therefore considered to be unstable. Signs of erosion include crumbling, unvegetated banks, exposed tree roots, and exposed soil.
- 8. **Bank Vegetative Protection** Estimates the extent of stream bank that is covered by plant growth providing stability through well-developed root systems. The stream bank is defined as the area from the water's surface to the bankfull delineation. This parameter supplies information on the ability of the bank to resist erosion as well as some additional information on the uptake of nutrients by the plants, the control of instream scouring, and stream shading. This parameter is made more effective by defining the native vegetation for the region and stream type (i.e., shrubs, trees, etc.). In some regions, the introduction of exotics has virtually replaced all native vegetation. The value of exotic vegetation to the quality of the habitat structure and contribution to the stream ecosystem must be considered in this parameter.
- 9. **Riparian Vegetative Zone** Estimates the width of natural vegetation from the edge of the stream bank out through the riparian zone. Narrow riparian zones occur when roads, parking lots, fields, lawns, bare soil, rocks, or buildings are near the stream bank. Residential developments, urban centers, golf courses, and rangeland are the common causes of anthropogenic degradation of the riparian zone. Conversely, the presence of "old field" (i.e., a previously developed field not currently in use), paths, and walkways in an otherwise undisturbed riparian zone may be judged to be inconsequential to altering the riparian zone and may be given relatively high scores." (Shull & Lookenbill, 2023)

Multihabitat/Low Gradient Habitat Evaluation Form

Physic	al Habit	at E	valua	atio	n Fo	rm	for I	Low	Gra	adier	nt (P	ool	/Glic	le)	Stre	ams	8		
Waterbody Name:				G	S Ke	y (YY	YYMN	MDD-h	hmm-	User):									
Location:																			
							_												
Investigators:							(comp	letec	By:									
Parameter		ptim				Sub	opti	mal				argin					Poo	-	
1. Epifaunal Substrate/Available Cover	Greater ti substrate epifaunal and fish of snags, su logs, und cobble or habitat at allow full potential logs/snag new fall a transient	favo color cover ubme lercut othe stag color (i.e., gs tha	rable nizatio ; mix orged bank r stab e to nizatio at are	for on of s, ole	habit full c poter habit of po prese subs new prepocolor	tat; wooloniontial; lat for pular ence trate fall, kared nizati	zationaded r mai tions of ac in the out no for on (n	quate ntena	for ance nal m of	10-30 habit availa desir frequ remo	at; ha ability able; ently	abitat y less subs	than strate	1	habi is ob	tat; la	ack o	% stab	tat
i	20 19		17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
2. Pool Substrate Characterization	Mixture of materials and firm of prevalent and subnivegetation	s, with sand t; root nerge	grave mats	el	mud be do mats	or cla	ay; m ant; s subr		root	All m botto mat; vege	m; lit	tle or ubme	no re	oot	Hard bedr vege	ock;	no ro	or oot ma	at or
	20 19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
3. Pool Variability	Even mix shallow, small-sha deep poo	large- allow, ols pre	deep small esent.	-	deep	; ver	y few	ols lar shal	low.	Shall more deep	prev	alent	t than	1	shall abse	ow c	or poo		
4.0.154		18	1/	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
4. Sediment Deposition	Little or n enlargem or point b than 20% affected i depositio	nent of pars a s of th by seen	ind les ne bot dimer	ss tom nt	bar form fine s of the sligh pools	orma grav sedin e bot t dep s.	tion, el, sa nent; tom a ositio	and o 20-5 affect on in	lly r 0% ed;	depo preva	grave sedim new be bott nent uction triction s; mo sition	el, sament opers; tom a depo ns, ons, a odera n of p	nd or on old 50-80 offector sits a and ote ools	i 0% ed; at	mate deve than char pool due sedii	erial, elopn 80% eging s aln to su ment	incre nent; of the freq nost a lbsta t dep	ositio	ttom /; it
			17		15					_	9	8	7	6	5	4	3	2	1
5. Channel Flow Status	Water rea both lower minimal a channel s exposed.	er bar amou substi	nks ar	nd	Wate avail <25% subs	able 6 of o	chan chan	nel; o	or	Wate the a and/o are n	vailal or riffl	ble cl le sul	hann bstrat	el tes		nnel a	and n	er in nostly anding	
	20 19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1


Parameter	Optimal	Suboptimal	Marginal	Poor				
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely						
ĺ	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1				
7. Condition of Banks	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly sealed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.				
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1				
8. Bank Vegetative Protection	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.		Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in stubble height.				
0 Dinasias	20 19 18 17 16		10 9 8 7 6	5 4 3 2 1				
9. Riparian Vegetative Zone	Width or riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear- cuts, lawns or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters; little or no riparian vegetation due to human activities.				
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1				

Section V. Sample Locations & Results

Location Descriptions:

Sites are broken into groups by watersheds, and proximity to maximize effectiveness for collection. A site selection meeting is held every year with the Monroe County Planning Commission, Monroe County Conservation District and local watersheds to evaluate the proposed sites for the year.

Site ID	Stream Name	Location	Township	Latitude	Longitude
AQUACR19	Aquashicola Creek	315 meters east from intersection of Upper Smith Gap Rd and Camp Hill Rd	Eldred	40.845611	-75.394982
BUCKCR01	Buckwha Creek	200 meters west of Chestnut Ridge Rd bridge	Eldred	40.847275	-75.451532
PRINRNO1	Princess Run	Walter W. Mock Memorial Park off Fiddletown Rd	Eldred	40.851843	-75.440199
POHOCR29	Pohopoco Creek	700 meters west on Whitey B Ln. from intersection of Whitey B Ln. and Rt. 209.	Polk	40.89951	-75.506215
MIDDCR04	Middle Creek	Downstream of observation deck on Cliff Woodring Trail.	Polk	40.905822	-75.496614
ROCOCR01	Ross Commons	95 meters east from intersection of Mount Eaton Rd and Spruce Rd to bridge over Ross Commons then 100 m south from bridge	Ross	40.872833	-75.326028
APPECR02	Appenzel Creek	Near residential housing, 160m west of the Foundry St. bridge.	Hamilton	40.946838	-75.310513
MCMICR22	McMichael Creek	115m south of intersection of Mcilhaney Rd. and Kennel Rd.	Chestnuthill	40.930902	-75.363567
POHOCR01	Pohopoco Creek	330m southeast from intersection of Merwinsburg Rd. and Burger Hollow Rd.	Chestnuthill	40.961684	-75.465
JONACR01	Jonas Creek	150m north of the Laurel Ln cul-de-sac	Polk	40.97567	-75.507843
BRODCR27	Brodhead Creek	170 meters northeast of Pasold Farm Dr. parking area.	Barrett	41.180941	_
	Brodhead Creek	170 meters northeast of Pasold Farm Dr. parking area.	Barrett	41.180941	-75.25091
MILLCRO3	Mill Creek	560m west of instersection of Sand Spring Rd. and Mill Creek Rd.	Barrett	41.163201	-75.251528
WILLECKOS	Middle Branch	High Acres Park upstream of Buck Hill Falls property on Barrett Township	barrett	41.105201	-7 5.251526
MBBRCR01	Brodhead Creek	property	Barrett	41.201715	THE RESERVE OF THE PARTY OF THE
BUHICR07	Buck Hill Creek	165 meters upstream of Buck Hill Golf Club off of Cresco Rd.	Barrett	41.194403	-75.281357
BRODCR22	Brodhead Creek	Sugar Cane Ln. access off of Rt. 191 Bridge upstream of confluence of PARACRO8.	Stroud	41.066523	-75.220216
PARACROS	Paradise Creek	Sugar Cane Ln. access off of Rt. 191 Bridge. 150m west from Sugar Cane Rd, walk across Brodhead to site.	Stroud	41.066498	-75.221395
BRODCR30	Brodhead Creek	120 meters southeast of Rt. 191 bridge near intersection of Rt. 191 and Rt. 447	Stroud	41.036093	-75.209176
BUTZRN01	Butz Run	1.14 miles down Sylvan Cascades Rd from intersection of Rt. 191	Paradise	41.076071	-75.235002
BUSHCR07	Bushkill Creek	340 meters north of Route 209 through ROW.	Middle Smithfield	41.084861	-75.019417
MARSCR22	Marshalls Creek	275 meters south of intersection of Orchard Rd and Marshalls Creek Rd off of Marshalls Creek Rd on Smithfield Twp property Marshalls Falls Park	Smithfield	41.051664	-75.136892
MARSCR18	Marshalls Creek	Next to Minisink Hotel parking lot off of Post Office Rd.	Smithfield	40.998555	-75.139952
CHERCRO1	Cherry Creek	Edge of the Woods Outfitters 100m from the intersection of 611 and Broad St.	Delaware Water Gap	40.984712	-75.145848
POCOCRO9	Pocono Creek	65m north of Old Mill Rd. bridge.	Pocono	41.039252	-75.309729
SWIFCR10	Swiftwater Creek	25m north of Manor Dr. bridge.	Pocono	ENEXT TOTAL SEC	-75.346355
INDIRNO3	Indian Run	150 meters north of Manor Dr. Bridge upstream of confluence with Swiftwater	Pocono	41.10211	-75.346358
POCOCR01	Pocono Creek	300m south on Camelback Rd from intersection of Camelback Rd. and Wilke Rd.	Pocono	41.058983	Company of the Compan
SASPRN01	Sand Spring	600m west of Wilke Rd. dead end.	Jackson	41.061595	-75.37459
SASPRNO2	Sand Spring	700m west of Wilke Rd. dead end.	Jackson	41.061234	-75.375798
TOBYCR01	Tobyhanna Creek	Upstream of 423 bridge.	Coolbaugh		-75.453057
TOBYCR14	Tobyhanna Creek	50m east of Rt. 115 bridge near Austin T. Blakeslee Natural Area.	Tobyhanna	41.082791	-75.583083
UPTNCR03	Upper Tunkhannock Creek	Tunnkhannock Creek association club house. Plunge pool to cummings pool.	Tobyhanna	41.103919	
TUNKCR04	Tunkhannock Creek	Off Fire Ln. Near Bethlehem Water Authority dam	Tunkhannock	41.029496	-75.451954
TUNKCR03	Tunkhannock Creek	160m north of Tunkhannock Fishing Association Parking area off SR115.	Tunkhannock	41.059541	-75.552735
KEIPRN01	Keiper Run	Upstream of culverts on Schoch's Mill Rd	Tunkhannock	41.050654	-75.532966
KEIPRNO2	Keiper Run	70 meters east of Rt. 903 bridge, upstream of bridge	Tunkhannock	41.053224	-75.552658
POCOCR14	Pocono Creek	70m south from S. 10th St and Ann St.	Stroudsburg	40.981165	-75.197009
MCMICR37	McMichael Creek	Hickory Valley Park 60m southeast from parking area.	Stroud	40.962041	-75.236508
CHERCRO7	Cherry Creek	125 meters south of bridge on Kemmertown Rd.	Hamilton	40.93657	-75.252769
	Louising Orces	1225 meter 3 300th or or loge on terminer town thu.	T. SHIRIEON	10.55037	13.232103

Site Summary Sheets

Site Summary Sheet: APPECR02

Stream Name	Appenzel Creek	Latitude	40.946838	
Date Sampled	4/25/2025	Longitude	-75.310513	
Time Sampled	7:45 AM	Municipality	Hamilton	
Drainage Area (sq mi)	15.1	Habitat Type	Riffle/Run	
Location Description	Near residential housing, 160	m west of the Foundry St. bridge.		

Field Measurements*No field Chem as YSI probe was broken pH Dissolved Oxygen (%) Dissolved Oxygen (mg/L) Conductivity (µS/cm) Total Dissolved Solids (mg/L) Temperature (°C)

Lab Chemistry Results					
Total Organic Carbon (mg/L	1.13	Phosphorus as P (mg/L)	<0.0250		
Chloride (mg/L)	19.3	Temperature (Lab) (°C)	19.9		
Hardness (mg CaCO3/L)	31.9	pH (Lab)	6.84		
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200		
Nitrate as N (mg/L)	0.568	Calcium (mg/L)	8.58		
Nitrate-Nitrite as N (mg/L)	0.568	Iron (mg/L)	<0.200		
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	2.54		
Total Dissolved Solids (Lab) (mg/L)	63.0	Alkalinity to pH 4.5 (mg CaCO3/L)	20.0		
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00		

Habitat Sampled		
Slow/Shallow	2	
Fast/Shallow	2	
Slow/Deep	1	
Fast/Deep	1	

Macroinvertebrate Metrics		
Total Taxa Richness	37	
EPT Taxa Richness	17	
Beck's Index	27	
Shannon Diversity Index	3.03	
Hilsenhoff Biotic Index	3.58	
Percent Sensitive Individuals	40.8	
Index of Biotic Integrity	81.3	

Embeddedness + Sediment Deposition	33
Condition of Banks + Vegetative Protection	30
Habitat Assessment Score (Overall)	190

Habitat Assessment Metrics

Site Summary Sheet: AQUACR19

Stream Name	Aquashicola Creek	Latitude	40.845611	
Date Sampled	4/23/2025	Longitude	-75.394982	
Time Sampled	8:00 AM	Municipality	Eldred	
Drainage Area (sq mi)	12.7	Habitat Type	Low Gradient	
Location Description	315 meters east from intersect	ion of Upper Smith Gap Rd and	Camp Hill Rd	

Field Measurements* No field Chem as YSI Probe was broken		
рН		
Dissolved Oxygen (%)		
Dissolved Oxygen (mg/L)		
Conductivity (µS/cm)		
Total Dissolved Solids (mg/L)		
Temperature (°C)		

Lab Chemistry Results					
Total Organic Carbon (mg/L	.) 1.65	Phosphorus as P (mg/L)	<0.0250		
Chloride (mg/L)	11.5	Temperature (Lab) (°C)	17.5		
Hardness (mg CaCO3/L)	64.1	pH (Lab)	6.58		
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200		
Nitrate as N (mg/L)	0.332	Calcium (mg/L)	18.1		
Nitrate-Nitrite as N (mg/L)	0.332	Iron (mg/L)	0.215		
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	4.58		
Total Dissolved Solids (Lab) (mg/L)	83.8	Alkalinity to pH 4.5 (mg CaCO3/L)	54.0		
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00		

Habitat Sample		
Cobble/Gravel	2	
Snag	2	
СРОМ	2	
Submerged Aquatic Vegetation	0	
Sand/Fine Sediment	4	

Wacroinvertebrate	Metrics
Total Taxa Richness	27
EPT Taxa Richness	9
Beck4	14
Shannon Diversity Index	2.06
# of Caddisfly Taxa	5
♯ of Mayfly Taxa	6
Index of Biotic Integrity	72.3

Habitat Assessment Metrics		
Pool Substrate Characterization + Sediment Deposition	27	
Bank Vegetative Protection + Bank Stability	35	
Habitat Assessment Score (Overall)	135	

Site Summary Sheet: BRODCR22

Stream Name	Brodhead Creek	Latitude	41.066523
Date Sampled	4/29/2025	Longitude	-75.220216
Time Sampled	11:20 AM	Municipality	Stroud
Drainage Area (sq mi)	70.6	Habitat Type	Riffle/Run
Location Description	Sugar Cone Ln. access off of Rt. 191 Bri	dge upstream of confluenc	e of PARACR08.

Field Measurements*No Chem as YSI probe was	
рН	
Dissolved Oxygen (%)	
Dissolved Oxygen (mg/L)	
Conductivity (µS/cm)	
Total Dissolved Solids (mg/L)	
Temperature (°C)	

Lab	Chemi	stry Results	
Total Organic Carbon (mg/L)	1.75	Phosphorus as P (mg/L)	<0.0250
Chloride (mg/L)	10.9	Temperature (Lab) (°C)	21.3
Hardness (mg CaCO3/L)	17.2	pH (Lab)	6.02
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200
Nitrate as N (mg/L)	0.152	Calcium (mg/L)	4.82
Nitrate-Nitrite as N (mg/L)	0.152	Iron (mg/L)	<0.200
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	1.27
Total Dissolved Solids (Lab) (mg/L)	44.0	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00

Slow/Shallow	1
Fast/Shallow	2
Slow/Deep	1
Fast/Deep	

Macroinvertebrate Metrics Habitat Assessment Me		Metric	
Total Taxa Richness	42	Embeddedness +	36
EPT Taxa Richness	21	Sediment Deposition	
Beck's Index	42	Condition of Banks	29
Shannon Diversity Index	3.08	Vegetative Protection	<u> </u>
Hilsenhoff Biotic Index	3.37	Habitat Assessment Score (Overall)	198
Percent Sensitive Individuals	41.2		
Index of Biotic Integrity	92.9		

Embeddedness +	36
Sediment Deposition	
Condition of Banks	29
Vegetative Protection	
Habitat Assessment Score (Overall)	198

Site Summary Sheet: BRODCR27

Stream Name	Brodhead Creek	Latitude	41.180941
Date Sampled	4/24/2025	Longitude	-75.25091
Time Sampled	8:35 AM	Municipality	Barrett
Drainage Area (sq mi)	30.4	Habitat Type	Riffle/Run
Location Description	170 meters northeast of Pasold Farm Dr	. parking area.	

Field Measurements*No field Chem as YSI probe was broken pH Dissolved Oxygen (%) Dissolved Oxygen (mg/L) Conductivity (µS/cm) Total Dissolved Solids (mg/L) Temperature (°C)

La	b Chemi	stry Results	
Total Organic Carbon (mg/L	1.88	Phosphorus as P (mg/L)	<0.0250
Chloride (mg/L)	11.5	Temperature (Lab) (°C)	19.1
Hardness (mg CaCO3/L)	15.9	pH (Lab)	7.18
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200
Nitrate as N (mg/L)	0.221	Calcium (mg/L)	4.38
Nitrate-Nitrite as N (mg/L)	0.221	Iron (mg/L)	<0.200
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	1.19
Total Dissolved Solids (Lab) (mg/L)	46.3	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00

Slow/Shallow	1
Fast/Shallow	2
Slow/Deep	1

Total Taxa Richness	42
EPT Taxa Richness	18
Beck's Index	42
Shannon Diversity Index	3.03
Hilsenhoff Biotic Index	3.49
Percent Sensitive Individuals	52.8
ndex of Biotic Integrity	90

Macroinvertebrate Metrics

Embeddedness +	37
Sediment Deposition	
Condition of Banks +	33
Vegetative Protection	
Habitat Assessment Score (Overall)	198

Habitat Assessment Metrics

Site Summary Sheet: BRODCR27R

Stream Name	Brodhead	Latitude	41.180941	
Date Sampled	4/24/2025	Longitude	-75.25091	
Time Sampled	8:39 AM	Municipality	Barrett	
Drainage Area (sq mi)	30.4	Habitat Type	Riffle/Run	
Location Description 170 meters northeast of Pasold Farm Dr. parking area.				

Field Measurements*No field Chem as YSI probe was broken

рН	
Dissolved Oxygen (%)	
Dissolved Oxygen (mg/L)	
Conductivity (µS/cm)	
Total Dissolved Solids (mg/L)	
Temperature (°C)	

Lab Chemistry Results				
Total Organic Carbon (mg/L	.) 1.85	Phosphorus as P (mg/L)	<0.0250	
Chloride (mg/L)	11.3	Temperature (Lab) (°C)	19.6	
Hardness (mg CaCO3/L)	16.0	pH (Lab)	7.38	
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200	
Nitrate as N (mg/L)	0.243	Calcium (mg/L)	4.44	
Nitrate-Nitrite as N (mg/L)	0.243	Iron (mg/L)	<0.200	
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	1.20	
Total Dissolved Solids (Lab) (mg/L)	41.3	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0	
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00	

Habitat Sampled		
Slow/Shallow	1	
Fast/Shallow	2	
Slow/Deep	2	
Fast/Deep	1	

Macroinvertebrate Metrics		Habitat Assessment Metrics	
Total Taxa Richness	44	Embeddedness +	37
EPT Taxa Richness	21	Sediment Deposition	
Beck's Index	45	Condition of Banks	33
Shannon Diversity Index	3.13	Vegetative Protection	
Hilsenhoff Biotic Index	3.20	Habitat Assessment Score (Overall)	198
Percent Sensitive Individuals	58.3		
Index of Biotic Integrity	92.1		

Embeddedness +	37
Sediment Deposition	
Condition of Banks	33
Vegetative Protection	
Habitat Assessment Score (Overall)	198

Site Summary Sheet: BRODCR30

Stream Name	Brodhead Creek	Latitude	41.036093	
Date Sampled	4/28/2025	Longitude	-75.209176	
Time Sampled	12:20 PM	Municipality	Stroud	
Drainage Area (sq mi)	122	Habitat Type	Riffle/Run	
Location Description	120 meters southeast of Rt. 191 bridge near intersection of Rt.191 and Rt. 447			

Field Measurements*No field Chem as YSI probe was broken pH Dissolved Oxygen (%) Dissolved Oxygen (mg/L) Conductivity (µS/cm)

Total Dissolved Solids (mg/L)

Temperature (°C)

Lab Chemistry Results				
Total Organic Carbon (mg/L	.) 1.64	Phosphorus as P (mg/L)	<0.0250	
Chloride (mg/L)	22.8	Temperature (Lab) (°C)	19.9	
Hardness (mg CaCO3/L)	24.3	pH (Lab)	6.92	
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200	
Nitrate as N (mg/L)	0.214	Calcium (mg/L)	6.87	
Nitrate-Nitrite as N (mg/L)	0.214	Iron (mg/L)	<0.200	
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	1.73	
Total Dissolved Solids (Lab) (mg/L)	70.0	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0	
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00	

Habitat Sampled		
Slow/Shallow	0	
Fast/Shallow	1	
Slow/Deep	2	
Fast/Deep	3	

Total Taxa Richness	31
EPT Taxa Richness	17
Beck's Index	28
Shannon Diversity Index	2.72
Hilsenhoff Biotic Index	4.14
Percent Sensitive Individuals	29.7
ndex of Biotic Integrity	85.3

Embeddedness +	32
Sediment Deposition	
Condition of Banks	31
Vegetative Protection	
Habitat Assessment Score (Overall)	176

Site Summary Sheet: BUCKCR01

Stream Name	Buckwha Creek	Latitude	40.847275
Date Sampled	4/23/2025	Longitude	-75.451532
Time Sampled	10:00 AM	Municipality	Eldred
Drainage Area (sq mi)	19.5	Habitat Type	Riffle/Run
Location Description 200 meters west of Chestnut Ridge Rd bridge			

Field Measurements*No field Chem as YSI probe was broken

рН
Dissolved Oxygen (%)
Dissolved Oxygen (mg/L)
Conductivity (µS/cm)
Total Dissolved Solids (mg/L)
Temperature (°C)

Lab Chemistry Results

Total Organic Carbon (mg/L)	1.10	Phosphorus as P (mg/L)	<0.0250
Chloride (mg/L)	14.0	Temperature (Lab) (°C)	17.9
Hardness (mg CaCO3/L)	35.4	pH (Lab)	6.61
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200
Nitrate as N (mg/L)	1.40	Calcium (mg/L)	9.44
Nitrate-Nitrite as N (mg/L)	1.40	Iron (mg/L)	<0.200
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	2.86
Total Dissolved Solids (Lab) (mg/L)	56.3	Alkalinity to pH 4.5 (mg CaCO3/L)	20.0
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00

Habitat Sampled

Slow/Shallow	0
Fast/Shallow	0
Slow/Deep	0
Fast/Deep	0

Macroinvertebrate Metrics

Total Taxa Richness	36
EPT Taxa Richness	17
Beck's Index	24
Shannon Diversity Index	3.05
Hilsenhoff Biotic Index	4.00
Percent Sensitive Individuals	32.1
Index of Biotic Integrity	77.4

Embeddedness +	34
Sediment Deposition	
Condition of Banks	28
+	
Vegetative Protection	
Habitat Assessment Score	190
(Overall)	

Site Summary Sheet: BUHICR07

Stream Name	Buck Hill Creek	Latitude	41.194403
Date Sampled	4/24/2025	Longitude	-75.281357
Time Sampled	10:17 AM	Municipality	Barrett
Drainage Area (sq mi)	5.92	Habitat Type	Riffle/Run
Location Description	Just upstream of golf course fairway at c	lubhouse, above falls	

Field Measurements*No field Chem as YSI probe was broken рН

• 6 2	
Dissolved Oxygen (%)	
Dissolved Oxygen (mg/L)	
Conductivity (µS/cm)	
Total Dissolved Solids (mg/L)	
Temperature (°C)	

Lab Chemistry Results

Total Organic Carbon (mg/L)	1.11	Phosphorus as P (mg/L)	<0.0250
Chloride (mg/L)	5.18	Temperature (Lab) (°C)	18.7
Hardness (mg CaCO3/L)	10.2	pH (Lab)	7.77
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200
Nitrate as N (mg/L)	0.108	Calcium (mg/L)	2.85
Nitrate-Nitrite as N (mg/L)	0.108	Iron (mg/L)	<0.200
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	0.758
Total Dissolved Solids (Lab) (mg/L)	<31.3	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00

Habitat Sampled

Slow/Shallow	1
Fast/Shallow	3
Slow/Deep	1
Fast/Deep	1

Macroinvertebrate Metrics

Total Taxa Richness	29
EPT Taxa Richness	18
Beck's Index	42
Shannon Diversity Index	2.86
Hilsenhoff Biotic Index	2.18
Percent Sensitive Individuals	71.5
Index of Biotic Integrity	93.9

38
34
184

Site Summary Sheet: BUSHCR07

Stream Name	Bushkill Creek	Latitude	41.084861	
Date Sampled	4/28/2025	Longitude	-75.019417	
Time Sampled	8:20 AM	Municipality	Middle Smithfield	
Drainage Area (sq mi)	120	Habitat Type	Riffle/Run	
Location Description 340 meters north of Route 209 through ROW.				

Field Measurements*No field Chem as YSI probe was broken

рН
Dissolved Oxygen (%)
Dissolved Oxygen (mg/L)
Conductivity (µS/cm)
Total Dissolved Solids (mg/L)
Temperature (°C)

Lab Chemistry Results

Total Organic Carbon (mg/L	3.86	Phosphorus as P (mg/L)	<0.025
Chloride (mg/L)	8.41	Temperature (Lab) (°C)	21.0
Hardness (mg CaCO3/L)	15.6	pH (Lab)	6.96
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200
Nitrate as N (mg/L)	<0.0500	Calcium (mg/L)	4.29
Nitrate-Nitrite as N (mg/L)	<0.0500	Iron (mg/L)	<0.200
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	1.18
Total Dissolved Solids (Lab) (mg/L)	47.5	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00

Habitat Sampled

Slow/Shallow	1
Fast/Shallow	1
Slow/Deep	1
Fast/Deep	3

Macroinvertebrate Metrics

Total Taxa Richness	38
EPT Taxa Richness	22
Beck's Index	30
Shannon Diversity Index	3.07
Hilsenhoff Biotic Index	3.50
Percent Sensitive Individuals	46.9
Index of Biotic Integrity	94.0

Embeddedness + Sediment Deposition	33
Condition of Banks + Vegetative Protection	34
Habitat Assessment Score (Overall)	209

Site Summary Sheet: BUTZRN01

Stream Name	Butz Run	Latitude	41.076071
Date Sampled	4/24/2025	Longitude	-75.235002
Time Sampled	11:20 AM	Municipality	Paradise
Drainage Area (sq mi)	3.74	Habitat Type	Riffle/Run
Location Description	1.14 miles down Sylvan Cascades Rd fro	om intersection of Rt. 19	91

Field Measurements*No field Chem as YSI probe was broken pH Dissolved Oxygen (%) Dissolved Oxygen (mg/L) Conductivity (µS/cm) Total Dissolved Solids (mg/L) Temperature (°C)

Lab Chemistry Results				
Total Organic Carbon (mg/L)	2.36	Phosphorus as P (mg/L)	<0.0250	
Chloride (mg/L)	20.5	Temperature (Lab) (°C)	18.5	
Hardness (mg CaCO3/L)	33.9	pH (Lab)	6.59	
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200	
Nitrate as N (mg/L)	0.338	Calcium (mg/L)	10.3	
Nitrate-Nitrite as N (mg/L)	0.338	Iron (mg/L)	<0.200	
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	2.00	
Total Dissolved Solids (Lab) (mg/L)	76.0	Alkalinity to pH 4.5 (mg CaCO3/L)	22.0	
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00	

Slow/Shallow	2
Fast/Shallow	2
Slow/Deep	0
Fast/Deep	2

Total Taxa Richness	35
EPT Taxa Richness	14
Beck's Index	30
Shannon Diversity Index	3.00
Hilsenhoff Biotic Index	3.26
Percent Sensitive Individuals	41.8
ndex of Biotic Integrity	80.9

Macroinvertebrate Metrics

Embeddedness +	36
Sediment Deposition	
Condition of Banks +	32
Vegetative Protection	
Habitat Assessment Score (Overall)	210

Site Summary Sheet: CHERCR01

Stream Name	Cherry Creek	Latitude	40.984712	
Date Sampled	4/28/2025	Longitude	-75.145848	
Time Sampled	11:30 AM	Municipality	Delaware Water Gap	
Drainage Area (sq mi)	20.4	Habitat Type	Riffle/Run	
Location Description	Located near Edge of the W	oods Outfitters 100m from the inter	rsection of 611 and Broad St.	

Field Measurements*No field Chem as YSI probe was broken pH Dissolved Oxygen (%) Dissolved Oxygen (mg/L) Conductivity (µS/cm) Total Dissolved Solids (mg/L) Temperature (°C)

Lab Chemistry Results				
Total Organic Carbon (mg/L	1.94	Phosphorus as P (mg/L)	0.0250	
Chloride (mg/L)	10.6	Temperature (Lab) (°C)	20.4	
Hardness (mg CaCO3/L)	100	pH (Lab)	7.58	
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200	
Nitrate as N (mg/L)	0.190	Calcium (mg/L)	29.6	
Nitrate-Nitrite as N (mg/L)	0.190	Iron (mg/L)	<0.200	
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	6.44	
Total Dissolved Solids (Lab) (mg/L)	132	Alkalinity to pH 4.5 (mg CaCO3/L)	85.0	
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00	

Habitat Sampled		
Slow/Shallow	1	
Fast/Shallow	2	
Slow/Deep	1	
Fast/Deep	2	

Total Taxa Richness	32
EPT Taxa Richness	14
Beck's Index	26
Shannon Diversity Index	2.99
Hilsenhoff Biotic Index	3.50
Percent Sensitive Individuals	44.0
ndex of Biotic Integrity	78.5

Macroinvertebrate Metrics

Embeddedness +	18
Sediment Deposition	
Condition of Banks	22
Vegetative Protection	
Habitat Assessment Score (Overall)	149

Site Summary Sheet: CHERCR07

Stream Name	Cherry Creek	Latitude	40.93657
Date Sampled	4/29/2025	Longitude	-75.252769
Time Sampled	9:40 AM	Municipality	Hamilton
Drainage Area (sq mi)	9	Habitat Type	Low Gradient
Location Description	125 meters south of bridge on Kemmerto	own Road.	

Field Measurements* No field Chem as YSI Probe was broken		
рН		
Dissolved Oxygen (%)		
Dissolved Oxygen (mg/L)		
Conductivity (µS/cm)	ĺ	
Total Dissolved Solids (mg/L)		
Temperature (°C)		

Lab Chemistry Results				
Total Organic Carbon (mg/L	.) 1.12	Phosphorus as P (mg/L)	<0.0250	
Chloride (mg/L)	6.36	Temperature (Lab) (°C)	21.9	
Hardness (mg CaCO3/L)	78.0	pH (Lab)	7.49	
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200	
Nitrate as N (mg/L)	0.263	Calcium (mg/L)	22.9	
Nitrate-Nitrite as N (mg/L)	0.263	Iron (mg/L)	<0.200	
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	5.07	
Total Dissolved Solids (Lab) (mg/L)	103	Alkalinity to pH 4.5 (mg CaCO3/L)	70.0	
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00	

Cobble/Gravel	3
Snag	2
СРОМ	2
Submerged Aquatic Vegetation	1
Sand/Fine Sediment	2

Total Taxa Richness	39
EPT Taxa Richness	24
Beck4	38
Shannon Diversity Index	2.66
# of Caddisfly Taxa	14
# of Mayfly Taxa	8
Index of Biotic Integrity	100

Pool Substrate Characterization +	31
Sediment Deposition	
Bank Vegetative Protection	27
Bank Stability	
Habitat Assessment Score (Overall)	130

Site Summary Sheet: CHERCR07R

Stream Name	Cherry Creek	Latitude	40.93657
Date Sampled	4/29/2025	Longitude	-75.252769
Time Sampled	9:50 AM	Municipality	Hamilton
Drainage Area (sq mi)	9	Habitat Type	Low Gradient
Location Description	125 meters south of bridge on Kemmerto	own Road.	

Field Measurements* No field Chem as YSI Probe was broken		
pH		
Dissolved Oxygen (%)	0	
Dissolved Oxygen (mg/L)		
Conductivity (µS/cm)		
Total Dissolved Solids (mg/L)		
Temperature (°C)		

Lab Chemistry Results				
Total Organic Carbon (mg/L	.) 1.82	Phosphorus as P (mg/L)	<0.0250	
Chloride (mg/L)	6.32	Temperature (Lab) (°C)	20.9	
Hardness (mg CaCO3/L)	78.8	pH (Lab)	7.37	
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200	
Nitrate as N (mg/L)	0.276	Calcium (mg/L)	23.1	
Nitrate-Nitrite as N (mg/L)	0.276	Iron (mg/L)	<0.200	
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	5.14	
Total Dissolved Solids (Lab) (mg/L)	102	Alkalinity to pH 4.5 (mg CaCO3/L)	68.0	
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00	

Habitat Sampled		
Cobble/Gravel	3	
Snag	2	
СРОМ	2	
Submerged Aquatic Vegetation	1	
Sand/Fine Sediment	2	

Total Taxa Richness	30
EPT Taxa Richness	17
Beck4	17
Shannon Diversity Index	2.24
of Caddisfly Taxa	8
of Mayfly Taxa	5
Index of Biotic Integrity	86.2

Habitat Assessment M	etrics	
Pool Substrate Characterization + Sediment Deposition	31	
Bank Vegetative Protection + Bank Stability	27	
Habitat Assessment Score (Overall)	130	

Site Summary Sheet: INDIRN03

Stream Name	Indian Run	Latitude	41.10211
Date Sampled	4/22/2025	Longitude	-75.346358
Time Sampled	9:30 AM	Municipality	Pocono
Drainage Area (sq mi)	1.94	Habitat Type	Riffle/Run
Location Description	150 meters upstream of confluence with	Swiftwater Creek	

Field Measurements*No field Chem as YSI probe was broken pH Dissolved Oxygen (%) Dissolved Oxygen (mg/L) Conductivity (µS/cm) Total Dissolved Solids (mg/L) Temperature (°C)

Lab Chemistry Results			
Total Organic Carbon (mg/L	.) 0.55	Phosphorus as P (mg/L)	<0.0250
Chloride (mg/L)	49.7	Temperature (Lab) (°C)	18.0
Hardness (mg CaCO3/L)	38.6	pH (Lab)	6.79
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200
Nitrate as N (mg/L)	0.654	Calcium (mg/L)	10.1
Nitrate-Nitrite as N (mg/L)	0.654	Iron (mg/L)	<0.200
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	3.24
Total Dissolved Solids (Lab) (mg/L)	129	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00

Slow/Shallow	2
Fast/Shallow	4
Slow/Deep	0
Fast/Deep	0

Total Taxa Richness	33
EPT Taxa Richness	17
Beck's Index	37
Shannon Diversity Index	2.86
Hilsenhoff Biotic Index	2.39
Percent Sensitive Individuals	65.3
Index of Biotic Integrity	93.0

Embeddedness +	33
Sediment Deposition	
Condition of Banks	17
Vegetative Protection	
Habitat Assessment Score (Overall)	196

Site Summary Sheet: JONACR01

Stream Name	Jonas Creek	Latitude	40.97567
Date Sampled	4/25/2025	Longitude	-75.507843
Time Sampled	11:00 AM	Municipality	Polk
Drainage Area (sq mi)	2.14	Habitat Type	Riffle/Run
Location Description	150m north of the Laurel Ln cul-de-sac.		

Field Measurements*No field Chem as YSI probe was broken pH Dissolved Oxygen (%) Dissolved Oxygen (mg/L) Conductivity (µS/cm) Total Dissolved Solids (mg/L) Temperature (°C)

Lab Chemistry Results			
Total Organic Carbon (mg/L	.) <1.00	Phosphorus as P (mg/L)	<0.0250
Chloride (mg/L)	18.0	Temperature (Lab) (°C)	19.8
Hardness (mg CaCO3/L)	13.9	pH (Lab)	6.96
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200
Nitrate as N (mg/L)	0.810	Calcium (mg/L)	3.38
Nitrate-Nitrite as N (mg/L)	0.810	Iron (mg/L)	<0.200
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	1.33
Total Dissolved Solids (Lab) (mg/L)	42.0	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00

Habitat Sampled	
Slow/Shallow	1
Fast/Shallow	2
Slow/Deep	1
Fast/Deep	2

Total Taxa Richness	31
EPT Taxa Richness	18
Beck's Index	39
Shannon Diversity Index	2.86
Hilsenhoff Biotic Index	2.28
Percent Sensitive Individuals	73.5
Index of Biotic Integrity	95.1

Embeddedness +	37
Sediment Deposition	
Condition of Banks	37
Vegetative Protection	
Habitat Assessment Score (Overall)	234

Site Summary Sheet: KEIPRN01

Stream Name	Keiper Run	Latitude	41.050654
Date Sampled	4/21/2025	Longitude	-75.532966
Time Sampled	12:20 PM	Municipality	Tunkhannock
Drainage Area (sq mi)	60.9	Habitat Type	Riffle/Run
Location Description	Upstream of culverts on Schoch's Mill Ro	pad	

Field Measurements*No field Chem as YSI probe was broken pH Dissolved Oxygen (%) Dissolved Oxygen (mg/L) Conductivity (µS/cm)

Total Dissolved Solids (mg/L)

Temperature (°C)

Lab Chemistry Results			
Total Organic Carbon (mg/L	1.55	Phosphorus as P (mg/L)	<0.0250
Chloride (mg/L)	21.9	Temperature (Lab) (°C)	18.1
Hardness (mg CaCO3/L)	10.1	pH (Lab)	7.38
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200
Nitrate as N (mg/L)	0.274	Calcium (mg/L)	2.87
Nitrate-Nitrite as N (mg/L)	0.274	Iron (mg/L)	<0.200
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	0.709
Total Dissolved Solids (Lab) (mg/L)	54.0	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00

Habitat Sampled Slow/Shallow 6 Fast/Shallow 0 Slow/Deep 0 Fast/Deep 0

Total Taxa Richness	22
EPT Taxa Richness	6
Beck's Index	9
Shannon Diversity Index	2.23
Hilsenhoff Biotic Index	3.69
Percent Sensitive Individuals	62.0
ndex of Biotic Integrity	68.5

Macroinvertebrate Metrics

Embeddedness +	17
Sediment Deposition	
Condition of Banks	10
Vegetative Protection	
Habitat Assessment Score (Overall)	119

Site Summary Sheet: KEIPRN02

Stream Name	Keiper Run	Latitude	41.053224
Date Sampled	4/21/2025	Longitude	-75.552658
Time Sampled	10:23 AM	Municipality	Tunkhannock
Drainage Area (sq mi)	1.55	Habitat Type	Riffle/Run
Location Description	Immediately upstream of SR 903 Bridge		

Field Measurements*No field Chem as YSI probe was broken pH Dissolved Oxygen (%) Dissolved Oxygen (mg/L) Conductivity (µS/cm) Total Dissolved Solids (mg/L) Temperature (°C)

Lab Chemistry Results			
Total Organic Carbon (mg/L)	2.17	Phosphorus as P (mg/L)	<0.0250
Chloride (mg/L)	23.6	Temperature (Lab) (°C)	18.0
Hardness (mg CaCO3/L)	13.9	pH (Lab)	6.44
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200
Nitrate as N (mg/L)	0.252	Calcium (mg/L)	3.63
Nitrate-Nitrite as N (mg/L)	0.252	Iron (mg/L)	0.271
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	1.18
Total Dissolved Solids (Lab) (mg/L)	53.8	Alkalinity to pH 4.5 (mg CaCO3/L)	20.0
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00

Habitat Sampled		
Slow/Shallow	0	
Fast/Shallow	6	
Slow/Deep	0	
Fast/Deep	0	

Total Taxa Richness	28
EPT Taxa Richness	5
Beck's Index	8
Shannon Diversity Index	2.49
Hilsenhoff Biotic Index	4.90
Percent Sensitive Individuals	34.1
ndex of Biotic Integrity	53.7

Embeddedness +	24
Sediment Deposition	
Condition of Banks	24
#	
Vegetative Protection	
Habitat Assessment Score	146
(Overall)	

Site Summary Sheet: MARSCR18

Stream Name	Marshalls Creek	Latitude	40.998555
Date Sampled	4/28/2025	Longitude	-75.139952
Time Sampled	10:55 AM	Municipality	Smithfield
Drainage Area (sq mi)	26.3	Habitat Type	Riffle/Run
Location Description	Next to Minisink Hotel parking lot off of P	ost Office Rd.	

Field Measurements*No field Chem as YSI probe was broken		
рН		
Dissolved Oxygen (%)		
Dissolved Oxygen (mg/L)		
Conductivity (µS/cm)		
Total Dissolved Solids (mg/L)		
Temperature (°C)		

Lab Chemistry Results				
Total Organic Carbon (mg/L	2.59	Phosphorus as P (mg/L)	<0.0250	
Chloride (mg/L)	29.4	Temperature (Lab) (°C)	21.2	
Hardness (mg CaCO3/L)	63.6	pH (Lab)	7.09	
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200	
Nitrate as N (mg/L)	0.178	Calcium (mg/L)	20.9	
Nitrate-Nitrite as N (mg/L)	0.178	Iron (mg/L)	0.238	
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	2.78	
Total Dissolved Solids (Lab) (mg/L)	130	Alkalinity to pH 4.5 (mg CaCO3/L)	44.0	
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00	

3
1

Total Taxa Richness	35
EPT Taxa Richness	19
Beck's Index	24
hannon Diversity Index	2.94
ilsenhoff Biotic Index	3.94
ercent Sensitive Individuals	35.2
ndex of Biotic Integrity	80.0

Embeddedness +	32
Sediment Deposition	
Condition of Banks +	20
Vegetative Protection	
Habitat Assessment Score (Overall)	159

Site Summary Sheet: MARSCR22

Stream Name	Marshalls Creek	Latitude	41.051664
Date Sampled	4/28/2025	Longitude	-75.136892
Time Sampled	9:45 AM	Municipality	Smithfield
Drainage Area (sq mi)	12.9	Habitat Type	Riffle/Run
Location Description	Marshalls Falls Park on Smithfield T	wp property. Downstream \$	50m of walkway.

Field Measurements*No field Chem as YSI probe was broken pH Dissolved Oxygen (%) Dissolved Oxygen (mg/L) Conductivity (µS/cm) Total Dissolved Solids (mg/L) Temperature (°C)

La	b Chemi	stry Results	
Total Organic Carbon (mg/L	.) 2.04	Phosphorus as P (mg/L)	<0.0250
Chloride (mg/L)	12.5	Temperature (Lab) (°C)	20.4
Hardness (mg CaCO3/L)	27.2	pH (Lab)	7.48
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200
Nitrate as N (mg/L)	0.199	Calcium (mg/L)	8.07
Nitrate-Nitrite as N (mg/L)	0.199	Iron (mg/L)	<0.200
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	1.71
Total Dissolved Solids (Lab) (mg/L)	53.0	Alkalinity to pH 4.5 (mg CaCO3/L)	20.0
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00

Habitat Sampled		
Slow/Shallow	2	
Fast/Shallow	2	
Slow/Deep	1	
Fast/Deep	1	

Total Taxa Richness	37
EPT Taxa Richness	21
Beck's Index	39
Shannon Diversity Index	3.15
Hilsenhoff Biotic Index	3.02
Percent Sensitive Individuals	50.6
ndex of Biotic Integrity	91.0

Macroinvertebrate Metrics

Embeddedness +	30
Sediment Deposition	
Condition of Banks	27
Vegetative Protection	
Habitat Assessment Score (Overall)	187

Site Summary Sheet: MBBRCR01

Stream Name	Middle Branch Brodhead Creek	Latitude	41.201715
Date Sampled	4/24/2025	Longitude	-75.265098
Time Sampled	9:35 AM	Municipality	Barrett
Drainage Area (sq mi)	5.04	Habitat Type	Riffle/Run
Location Description	High Acres Park upstream of Buck Hi	II Falls property on Barrett	t Township's property.

рН	
Dissolved Oxygen (%)	
Dissolved Oxygen (mg/L)	
Conductivity (µS/cm)	
Total Dissolved Solids (mg/L)

Lab Chemistry Results				
Total Organic Carbon (mg/L)	1.49	Phosphorus as P (mg/L)	<0.0250	
Chloride (mg/L)	12.8	Temperature (Lab) (°C)	19.5	
Hardness (mg CaCO3/L)	18.4	pH (Lab)	7.15	
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200	
Nitrate as N (mg/L)	0.225	Calcium (mg/L)	5.22	
Nitrate-Nitrite as N (mg/L)	0.225	Iron (mg/L)	<0.200	
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	1.31	
Total Dissolved Solids (Lab) (mg/L)	45.0	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0	
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00	

Slow/Shallow	1
Fast/Shallow	3
Slow/Deep	1

Total Taxa Richness	40
EPT Taxa Richness	25
Beck's Index	56
Shannon Diversity Index	3.13
Hilsenhoff Biotic Index	2.43
Percent Sensitive Individuals	66.4
ndex of Biotic Integrity	95.3

Embeddedness +	39
Sediment Deposition	
Condition of Banks	36
+	
Vegetative Protection	_
Habitat Assessment Score	223
(Overall)	

Site Summary Sheet: MCMICR22

Stream Name	McMichael Creek	Latitude	40.930902
Date Sampled	4/25/2025	Longitude	-75.363567
Time Sampled	9:00 AM	Municipality	Chestnuthill
Drainage Area (sq mi)	17.7	Habitat Type	Riffle/Run
Location Description	115m south of intersection of Mcilhaney I	Rd. and Kennel Rd.	

Field Measurements*No field Chem as YSI probe was broken		
pН		
Dissolved Oxygen (%)		
Dissolved Oxygen (mg/L)		
Conductivity (µS/cm)	1	
Total Dissolved Solids (mg/L)		
Temperature (°C)		

Lab Chemistry Results			
Total Organic Carbon (mg/L	.) <1.00	Phosphorus as P (mg/L)	<0.0250
Chloride (mg/L)	10.3	Temperature (Lab) (°C)	19.6
Hardness (mg CaCO3/L)	18.0	pH (Lab)	5.79
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200
Nitrate as N (mg/L)	0.472	Calcium (mg/L)	4.47
Nitrate-Nitrite as N (mg/L)	0.472	Iron (mg/L)	<0.200
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	1.67
Total Dissolved Solids (Lab) (mg/L)	36.0	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00

1
1

Total Taxa Richness	43
EPT Taxa Richness	24
Beck's Index	47
Shannon Diversity Index	3.21
Hilsenhoff Biotic Index	3.37
Percent Sensitive Individuals	51.7
ndex of Biotic Integrity	90.5

Embeddedness +	29
Sediment Deposition	
Condition of Banks	33
Vegetative Protection	
Habitat Assessment Score (Overall)	200

Site Summary Sheet: MCMICR37

Stream Name	McMichael Creek	Latitude	40.962041	
Date Sampled	4/29/2025	Longitude	-75.236508	
Time Sampled	8:11 AM	Municipality	Stroud	
Drainage Area (sq mi)	63.1	Habitat Type	Riffle/Run	
Location Description	Hickory Valley Park 60m south	neast from parking area.		2

Field Measurements*No field Chem as YSI probe was broken pH Dissolved Oxygen (%) Dissolved Oxygen (mg/L) Conductivity (µS/cm) Total Dissolved Solids (mg/L) Temperature (°C)

Lab Chemistry Results			
Total Organic Carbon (mg/L)	1.75	Phosphorus as P (mg/L)	<0.0250
Chloride (mg/L)	20.3	Temperature (Lab) (°C)	21.0
Hardness (mg CaCO3/L)	44.3	pH (Lab)	6.86
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200
Nitrate as N (mg/L)	0.443	Calcium (mg/L)	13.7
Nitrate-Nitrite as N (mg/L)	0.443	Iron (mg/L)	<0.200
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	2.45
Total Dissolved Solids (Lab) (mg/L)	83.0	Alkalinity to pH 4.5 (mg CaCO3/L)	30.0
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00

Habitat Sampled		
Slow/Shallow	2	
Fast/Shallow	2	
Slow/Deep	1	
Fast/Deep	1	

Total Taxa Richness	28
EPT Taxa Richness	14
Beck's Index	22
Shannon Diversity Index	2.70
Hilsenhoff Biotic Index	3.83
Percent Sensitive Individuals	34.3
ndex of Biotic Integrity	85.4

Macroinvertebrate Metrics

Embeddedness +	35
Sediment Deposition	
Condition of Banks	12
Vegetative Protection	
Habitat Assessment Score (Overall)	159

Site Summary Sheet: MIDDCR04

Stream Name	Middle Creek	Latitude	40.905822
Date Sampled	4/25/2025	Longitude	-75.496614
Time Sampled	9:55 AM	Municipality	Polk
Drainage Area (sq mi)	18.1	Habitat Type	Riffle/Run
Location Description	Downstream of observation deck on Clir	ff Woodring Trail.	

рН	
Dissolved Oxygen (%)	
Dissolved Oxygen (mg/L)	
Conductivity (µS/cm)	
Total Dissolved Solids (mg/L)	
Temperature (°C)	

Lab	Lab Chemistry Results		
Total Organic Carbon (mg/L)	<1.00	Phosphorus as P (mg/L)	<0.0250
Chloride (mg/L)	13.2	Temperature (Lab) (°C)	19.9
Hardness (mg CaCO3/L)	21.5	pH (Lab)	6.9
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200
Nitrate as N (mg/L)	0.903	Calcium (mg/L)	4.98
Nitrate-Nitrite as N (mg/L)	0.903	Iron (mg/L)	<0.200
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	2.20
Total Dissolved Solids (Lab) (mg/L)	46.0	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00

Habitat Sampled	
Slow/Shallow	1
Fast/Shallow	3
Slow/Deep	1
Fast/Deep	1

Macroinvertebrate M	Pertebrate Metrics Habitat Assessment Metrics		
Total Taxa Richness	43	Embeddedness +	29
EPT Taxa Richness	20	Sediment Deposition	
Beck's Index	36	Condition of Banks +	32
Shannon Diversity Index	3.19	Vegetative Protection	<u> </u>
Hilsenhoff Biotic Index	2.97	Habitat Assessment Score (Overall)	173
Percent Sensitive Individuals	58.3		
Index of Biotic Integrity	91.8		

Embeddedness +	29
Sediment Deposition	
Condition of Banks +	32
Vegetative Protection	
Habitat Assessment Score (Overall)	173

Site Summary Sheet: MILLCR03

Stream Name	Mill Creek	Latitude	41.163201
Date Sampled	4/24/2025	Longitude	-75.251528
Time Sampled	7:15 AM	Municipality	Barrett
Drainage Area (sq mi)	6.79	Habitat Type	Riffle/Run
Location Description	560m west of intersection of Sand Spring	g Rd. and Mill Creek Rd.	

Field Measurements*No field Chem as YSI probe was broken pH Dissolved Oxygen (%) Dissolved Oxygen (mg/L) Conductivity (µS/cm) Total Dissolved Solids (mg/L) Temperature (°C)

La	b Chemi	stry Results	
Total Organic Carbon (mg/L	.) 1.03	Phosphorus as P (mg/L)	<0.0250
Chloride (mg/L)	15.6	Temperature (Lab) (°C)	18.2
Hardness (mg CaCO3/L)	19.1	pH (Lab)	7.52
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200
Nitrate as N (mg/L)	0.237	Calcium (mg/L)	5.33
Nitrate-Nitrite as N (mg/L)	0.237	Iron (mg/L)	<0.200
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	1.40
Total Dissolved Solids (Lab) (mg/L)	47.5	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00

Habitat Sampled	
Slow/Shallow	2
Fast/Shallow	1
Slow/Deep	1
Fast/Deep	2

Total Taxa Richness	40
EPT Taxa Richness	22
Beck's Index	56
Shannon Diversity Index	3.13
Hilsenhoff Biotic Index	2.81
Percent Sensitive Individuals	62.2
Index of Biotic Integrity	93.7

Embeddedness +	38
Sediment Deposition	
Condition of Banks	28
+	
Vegetative Protection	
Habitat Assessment Score	205
(Overall)	

Site Summary Sheet: PARACR08

Stream Name	Paradise Creek	Latitude	41.066498
Date Sampled	4/29/2025	Longitude	-75.221395
Time Sampled	11:50 AM	Municipality	Stroud
Drainage Area (sq mi)	43.5	Habitat Type	Riffle/Run
Location Description	Sugar Cone Ln. access off of Rt. 191 Bri	dge upstream of confluen	ce of Brodhead Creek.

Field Measurements*No Chem as YSI probe was	
рН	
Dissolved Oxygen (%)	
Dissolved Oxygen (mg/L)	
Conductivity (µS/cm)	
Total Dissolved Solids (mg/L)	
Temperature (°C)	

La	b Chemi	stry Results	
Total Organic Carbon (mg/L	.) 1.22	Phosphorus as P (mg/L)	<0.0250
Chloride (mg/L)	44.4	Temperature (Lab) (°C)	21.4
Hardness (mg CaCO3/L)	36.1	pH (Lab)	6.45
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200
Nitrate as N (mg/L)	0.364	Calcium (mg/L)	10.1
Nitrate-Nitrite as N (mg/L)	0.364	Iron (mg/L)	<0.200
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	2.63
Total Dissolved Solids (Lab) (mg/L)	108	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00

Slow/Shallow	1
Fast/Shallow	2
Slow/Deep	1
Fast/Deep	2

Total Taxa Richness	331
EPT Taxa Richness	16
Beck's Index	28
Shannon Diversity Index	2.84
Hilsenhoff Biotic Index	4.07
Percent Sensitive Individuals	31.0
Index of Biotic Integrity	88.5

Embeddedness +	32
Sediment Deposition	
Condition of Banks	21
+	
Vegetative Protection	
Habitat Assessment Score	183
(Overall)	

Site Summary Sheet: POCOCR01

Stream Name	Pocono Creek	Latitude	41.058983
Date Sampled	4/21/2025	Longitude	-75.34886
Time Sampled	7:40 AM	Municipality	Pocono
Drainage Area (sq mi)	8.84	Habitat Type	Riffle/Run
Location Description	300m south on Camelback Rd from	intersection of Camelback	Rd. and Wilke Rd.

Field Measurements*No field Chem as YSI probe was broken pH Dissolved Oxygen (%) Dissolved Oxygen (mg/L) Conductivity (µS/cm) Total Dissolved Solids (mg/L) Temperature (°C)

Lab	Chemi	stry Results	
Total Organic Carbon (mg/L)	1.16	Phosphorus as P (mg/L)	<0.0250
Chloride (mg/L)	30.9	Temperature (Lab) (°C)	19.9
Hardness (mg CaCO3/L)	23.3	pH (Lab)	6.86
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200
Nitrate as N (mg/L)	0.189	Calcium (mg/L)	6.49
Nitrate-Nitrite as N (mg/L)	0.189	Iron (mg/L)	<0.200
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	1.72
Total Dissolved Solids (Lab) (mg/L)	70.0	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00

Slow/Shallow	1
Fast/Shallow	1
Slow/Deep	1
Fast/Deep	

Total Taxa Richness	25
EPT Taxa Richness	12
Beck's Index	30
Shannon Diversity Index	2.70
Hilsenhoff Biotic Index	2.95
Percent Sensitive Individuals	61.7
Index of Biotic Integrity	78.7

Embeddedness +	33
Sediment Deposition	
Condition of Banks	28
Vegetative Protection	
Habitat Assessment Score (Overall)	196

Site Summary Sheet: POCOCR09

Stream Name	Pocono Creek	Latitude	41.039252
Date Sampled	4/21/2025	Longitude	-75.309729
Time Sampled	8:05 AM	Municipality	Pocono
Drainage Area (sq mi)	18.6	Habitat Type	Riffle/Run
Location Description	65m north of Old Mill Rd. bridge.		

Field Measurements*No field Chem as YSI probe was broken pH Dissolved Oxygen (%) Dissolved Oxygen (mg/L) Conductivity (µS/cm) Total Dissolved Solids (mg/L) Temperature (°C)

Lab Chemistry Results				
Total Organic Carbon (mg/L)	1.20	Phosphorus as P (mg/L)	<0.0250	
Chloride (mg/L)	49.1	Temperature (Lab) (°C)	17.8	
Hardness (mg CaCO3/L)	33.5	pH (Lab)	6.29	
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200	
Nitrate as N (mg/L)	0.375	Calcium (mg/L)	9.09	
Nitrate-Nitrite as N (mg/L)	0.375	Iron (mg/L)	<0.200	
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	2.62	
Total Dissolved Solids (Lab) (mg/L)	123	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0	
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00	

Habitat Sampled		
Slow/Shallow	0	
Fast/Shallow	4	
Slow/Deep	0	
Fast/Deep	2	

Total Taxa Richness	36
EPT Taxa Richness	19
Beck's Index	35
Shannon Diversity Index	2.63
lilsenhoff Biotic Index	4.37
Percent Sensitive Individuals	31.3
ndex of Biotic Integrity	81.7

Macroinvertebrate Metrics

Embeddedness +	31
Sediment Deposition	
Condition of Banks	19
+ Vegetative Protection	
Habitat Assessment Score (Overall)	165

Site Summary Sheet: POCOCR14

Stream Name	Pocono Creek	Latitude	40.981165
Date Sampled	4/29/2025	Longitude	-75.197009
Time Sampled	8:40 AM	Municipality	Stroudsburg
Drainage Area (sq mi)	49.4	Habitat Type	Riffle/Run
Location Description	70m south from S. 10th St and Ann St.		

Field Measurements*No field Chem as YSI probe was broken pH Dissolved Oxygen (%) Dissolved Oxygen (mg/L) Conductivity (µS/cm)

Total Dissolved Solids (mg/L)

Temperature (°C)

Lab Chemistry Results				
Total Organic Carbon (mg/L	2.63	Phosphorus as P (mg/L)	<0.0250	
Chloride (mg/L)	59.3	Temperature (Lab) (°C)	21.0	
Hardness (mg CaCO3/L)	54.0	pH (Lab)	7.01	
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200	
Nitrate as N (mg/L)	0.298	Calcium (mg/L)	16.3	
Nitrate-Nitrite as N (mg/L)	0.298	Iron (mg/L)	<0.200	
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	3.26	
Total Dissolved Solids (Lab) (mg/L)	179	Alkalinity to pH 4.5 (mg CaCO3/L)	32.0	
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00	

Habitat Sampled		
2		
2		
1		
1		

Total Taxa Richness	33
EPT Taxa Richness	14
Beck's Index	24
Shannon Diversity Index	2.74
Hilsenhoff Biotic Index	4.37
Percent Sensitive Individuals	24.5
ndex of Biotic Integrity	71.9

Macroinvertebrate Metrics

Embeddedness +	19
Sediment Deposition	
Condition of Banks +	12
Vegetative Protection	
Habitat Assessment Score (Overall)	127

Site Summary Sheet: POHOCR01

Stream Name	Pohopoco Creek	Latitude	40.961684
Date Sampled	4/25/2025	Longitude	-75.465
Time Sampled	11:49 AM	Municipality	Chestnuthill
Drainage Area (sq mi)	5.86	Habitat Type	Riffle/Run
Location Description	330m southeast from intersection of Me	erwinsburg Rd. and Burg	ger Hollow Rd.

Field Measurements*No field Chem as YSI probe was broken		
рН		
Dissolved Oxygen (%)	100	
Dissolved Oxygen (mg/L)		
Conductivity (µS/cm)		
Total Dissolved Solids (mg/L)		
Temperature (°C)		

Lab	Lab Chemistry Results		
Total Organic Carbon (mg/L)	<1.00	Phosphorus as P (mg/L)	<0.0250
Chloride (mg/L)	27.6	Temperature (Lab) (°C)	19.9
Hardness (mg CaCO3/L)	26.2	pH (Lab)	7.07
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200
Nitrate as N (mg/L)	1.07	Calcium (mg/L)	5.93
Nitrate-Nitrite as N (mg/L)	1.07	Iron (mg/L)	<0.200
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	2.77
Total Dissolved Solids (Lab) (mg/L)	74.0	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00

Slow/Shallow	1
Fast/Shallow	1
Slow/Deep	1
Fast/Deep	3

Macroinvertebrate N	acroinvertebrate Metrics Habitat Assessment Metric		Metrics
Total Taxa Richness	36	Embeddedness +	28
EPT Taxa Richness	20	Sediment Deposition	
Beck's Index	40	Condition of Banks	32
Shannon Diversity Index	2.92	Vegetative Protection	
Hilsenhoff Biotic Index	3.42	Habitat Assessment Score (Overall)	201
Percent Sensitive Individuals	51.4		
Index of Biotic Integrity	90.3		

Embeddedness +	28
Sediment Deposition	
Condition of Banks +	32
Vegetative Protection	
Habitat Assessment Score (Overall)	201

Site Summary Sheet: POHOCR29

Stream Name	Pohopoco Creek	Latitude	40.89951
Date Sampled	4/23/2025	Longitude	-75.506215
Time Sampled	12:27 PM	Municipality	Polk
Drainage Area (sq mi)	50	Habitat Type	Riffle/Run
Location Description	700 meters west on Whitey B Ln. from	n intersection of Whitey B	Ln. and Rt. 209.

Field Measurements*No field Chem as YSI probe was broken pH Dissolved Oxygen (%) Dissolved Oxygen (mg/L) Conductivity (µS/cm) Total Dissolved Solids (mg/L) Temperature (°C)

Lab Chemistry Results			
Total Organic Carbon (mg/L)	1.30	Phosphorus as P (mg/L)	<0.0250
Chloride (mg/L)	21.8	Temperature (Lab) (°C)	18.6
Hardness (mg CaCO3/L)	32.9	pH (Lab)	7.47
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200
Nitrate as N (mg/L)	1.36	Calcium (mg/L)	8.02
Nitrate-Nitrite as N (mg/L)	1.36	Iron (mg/L)	<0.200
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	3.12
Total Dissolved Solids (Lab) (mg/L)	76.3	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00

Habitat Sampled Slow/Shallow Fast/Shallow Slow/Deep 0 Fast/Deep 0

Total Taxa Richness	38
EPT Taxa Richness	20
Beck's Index	40
Shannon Diversity Index	2.92
Hilsenhoff Biotic Index	3.71
Percent Sensitive Individuals	44.1
Index of Biotic Integrity	92.8

Embeddedness +	35
Sediment Deposition	
Condition of Banks +	32
Vegetative Protection	
Habitat Assessment Score (Overall)	189

Site Summary Sheet: PRINRN01

Stream Name	Princess Run	Latitude	40.851843	
Date Sampled	4/23/2025	Longitude	-75.440199	
Time Sampled	11:00 AM	Municipality	Eldred	
Drainage Area (sq mi)	9.91	Habitat Type	Riffle/Run	
Location Description	Adjacent to Walter Mock Mu	unicipal Park.		

Field Measurements*No field Chem as YSI probe was broken pH Dissolved Oxygen (%) Dissolved Oxygen (mg/L) Conductivity (µS/cm) Total Dissolved Solids (mg/L)

Temperature (°C)

Lab Chemistry Results			
Total Organic Carbon (mg/L)	0.84	Phosphorus as P (mg/L)	<0.0250
Chloride (mg/L)	15.3	Temperature (Lab) (°C)	18.7
Hardness (mg CaCO3/L)	32.6	pH (Lab)	7.47
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200
Nitrate as N (mg/L)	1.64	Calcium (mg/L)	7.65
Nitrate-Nitrite as N (mg/L)	1.64	Iron (mg/L)	<0.200
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	3.27
Total Dissolved Solids (Lab) (mg/L)	62.5	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00

Habitat Sampled Slow/Shallow 1 Fast/Shallow 2 Slow/Deep 1 Fast/Deep 2

Total Taxa Richness	32
EPT Taxa Richness	21
Beck's Index	31
Shannon Diversity Index	2.77
Hilsenhoff Biotic Index	4.34
Percent Sensitive Individuals	36.5
ndex of Biotic Integrity	81.4

Embeddedness +	35
Sediment Deposition	
Condition of Banks	36
+ Vegetative Protection	
Habitat Assessment Score	213
(Overall)	III .

Site Summary Sheet: ROCOCR01

Stream Name	Ross Commons Creek	Latitude	40.872833
Date Sampled	4/23/2025	Longitude	-75.326028
Time Sampled	9:00 AM	Municipality	Ross
Drainage Area (sq mi)	3.75	Habitat Type	Riffle/Run
Location Description	95m East from interection of Mou	unt Eaton Rd and Spruce Rd to	b bridge over Ross Commons. 100m South from

рН		
Dissolved Oxygen (%)	600	
Dissolved Oxygen (mg/L)		
Conductivity (µS/cm)		
Total Dissolved Solids (m	g/L)	
Temperature (°C)	l l	

Lab	Lab Chemistry Results		
Total Organic Carbon (mg/L)	0.79	Phosphorus as P (mg/L)	<0.0250
Chloride (mg/L)	11.6	Temperature (Lab) (°C)	18.0
Hardness (mg CaCO3/L)	21.1	pH (Lab)	5.9
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200
Nitrate as N (mg/L)	0.412	Calcium (mg/L)	5.03
Nitrate-Nitrite as N (mg/L)	0.412	Iron (mg/L)	<0.200
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	2.07
Total Dissolved Solids (Lab) (mg/L)	38.8	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00

Habitat Sampled	
Slow/Shallow	1
Fast/Shallow	3
Slow/Deep	1
Fast/Deep	1

Total Taxa Richness	24
EPT Taxa Richness	13
Beck's Index	32
Shannon Diversity Index	2.45
Hilsenhoff Biotic Index	3.76
Percent Sensitive Individuals	42.2
Index of Biotic Integrity	73.0

Embeddedness +	36
Sediment Deposition	
Condition of Banks +	26
Vegetative Protection	
Habitat Assessment Score (Overall)	197

Site Summary Sheet: SASPRN01

Stream Name	Sand Spring Run	Latitude	41.061598
Date Sampled	4/22/2025	Longitude	-75.37459
Time Sampled	10:45 AM	Municipality	Jackson
Drainage Area (sq mi)	1.19	Habitat Type	Riffle/Run
Location Description	600m west of Wilke Rd. dead end		

Field Measurements*No field Chem as YSI probe was broken	
рН	
Dissolved Oxygen (%)	
Dissolved Oxygen (mg/L)	
Conductivity (µS/cm)	
Total Dissolved Solids (mg/L)	
Temperature (°C)	

Lab Chemistry Results		
Total Organic Carbon (mg/L)	Phosphorus as P (mg/L)	
Chloride (mg/L)	Temperature (Lab) (°C)	
Hardness (mg CaCO3/L)	pH (Lab)	0
Ammonia as N (mg/L)	Aluminum (mg/L)	
Nitrate as N (mg/L)	Calcium (mg/L)	
Nitrate-Nitrite as N (mg/L)	Iron (mg/L)	
Nitrite as N (mg/L)	Magnesium (mg/L)	
Total Dissolved Solids (Lab) (mg/L)	Alkalinity to pH 4.5 (mg CaCO3/L)	
Total Kjeldahl Nitrogen (mg/L)	Biochemical Oxygen Demand (mg/L)	

Habitat Sampled	
Slow/Shallow	2
Fast/Shallow	4
Slow/Deep	0
Fast/Deep	0

Macroinvertebrate Metrics	
Total Taxa Richness	28
EPT Taxa Richness	12
Beck's Index	29
Shannon Diversity Index	2.33
Hilsenhoff Biotic Index	3.72
Percent Sensitive Individuals	50.8
Index of Biotic Integrity	74.4

Embeddedness +	36
Sediment Deposition	
Condition of Banks	28
+	
Vegetative Protection	_
Habitat Assessment Score	206
(Overall)	

Habitat Assessment Metrics

Lab Chemistry was not done for this site in 2025

Site Summary Sheet: SASPRN02

Stream Name	Sand Spring Run	Latitude	41.061234
Date Sampled	4/22/2025	Longitude	-75.375798
Time Sampled	11:15 AM	Municipality	Jackson
Drainage Area (sq mi)	1.18	Habitat Type	Riffle/Run
Location Description	700m west of Wilke Rd. dead end.		

Н	
Dissolved Oxygen (%)	
Dissolved Oxygen (mg/L)	
Conductivity (µS/cm)	
Total Dissolved Solids (mg/L)	

Lab Chemistry Results				
Total Organic Carbon (mg/L)	Phosphorus as P (mg/L)			
Chloride (mg/L)	Temperature (Lab) (°C)			
Hardness (mg CaCO3/L)	pH (Lab)	0		
Ammonia as N (mg/L)	Aluminum (mg/L)			
Nitrate as N (mg/L)	Calcium (mg/L)			
Nitrate-Nitrite as N (mg/L)	Iron (mg/L)			
Nitrite as N (mg/L)	Magnesium (mg/L)			
Total Dissolved Solids (Lab) (mg/L)	Alkalinity to pH 4.5 (mg CaCO3/L)			
Total Kjeldahl Nitrogen (mg/L)	Biochemical Oxygen Demand (mg/L)			

Habitat Sampled		
Slow/Shallow	1	
Fast/Shallow	5	
Slow/Deep	0	
Fast/Deep	0	

Total Taxa Richness	23
EPT Taxa Richness	11
Beck's Index	28
Shannon Diversity Index	2.27
Hilsenhoff Biotic Index	3.94
Percent Sensitive Individuals	42.1
Index of Biotic Integrity	67.5

Macroinvertebrate Metrics		Habitat Assessment Metrics		
Total Taxa Richness	23	Embeddedness +	33	
PT Taxa Richness 11		Sediment Deposition		
Beck's Index	28	Condition of Banks	18	
Shannon Diversity Index	2.27	Vegetative Protection		
Hilsenhoff Biotic Index	3.94	Habitat Assessment Score (Overall)	169	

Lab Chemistry was not done for this site in 2025

Site Summary Sheet: SWIFCR10

Stream Name	Swiftwater Creek	Latitude	41.100894
Date Sampled	4/22/2025	Longitude	-75.346355
Time Sampled	8:55 AM	Municipality	Pocono
Drainage Area (sq mi)	3.35	Habitat Type	Riffle/Run
Location Description	25m North of Manor Dr. Bridge		

Field Measurements*No field Chem as YSI probe was broken pH Dissolved Oxygen (%) Dissolved Oxygen (mg/L) Conductivity (µS/cm) Total Dissolved Solids (mg/L) Temperature (°C)

Lab Chemistry Results				
Total Organic Carbon (mg/L)	0.67	Phosphorus as P (mg/L)	<0.0250	
Chloride (mg/L)	37.6	Temperature (Lab) (°C)	17.7	
Hardness (mg CaCO3/L)	27.1	pH (Lab)	6.89	
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200	
Nitrate as N (mg/L)	0.718	Calcium (mg/L)	7.34	
Nitrate-Nitrite as N (mg/L)	0.718	Iron (mg/L)	<0.200	
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	2.12	
Total Dissolved Solids (Lab) (mg/L)	95.0	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0	
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00	

Habitat Sampled		
Slow/Shallow	1	
Fast/Shallow	2	
Slow/Deep	1	
Fast/Deep	2	

Total Taxa Richness	35
EPT Taxa Richness	18
Beck's Index	36
Shannon Diversity Index	3.03
Hilsenhoff Biotic Index	3.43
Percent Sensitive Individuals	50.7
Index of Biotic Integrity	88.4

Embeddedness +	35
Sediment Deposition	
Condition of Banks	34
#	
Vegetative Protection	
Habitat Assessment Score	213
(Overall)	

Site Summary Sheet: TOBYCR01

Stream Name	Tobyhanna Creek	Latitude	41.1613287
Date Sampled	4/30/2025	Longitude	-75.4530568
Time Sampled	10:15 AM	Municipality	Coolbaugh
Drainage Area (sq mi)	21.9	Habitat Type	Riffle/Run
Location Description	Upstream of 423 bridge		

Field Measurements*No field Chem as YSI probe was broke	
рН	
Dissolved Oxygen (%)	0312
Dissolved Oxygen (mg/L)	
Conductivity (µS/cm)	
Total Dissolved Solids (mg/L)	
Temperature (°C)	

Lab Chemistry Results			
Total Organic Carbon (mg/L)	6.58	Phosphorus as P (mg/L)	<0.0250
Chloride (mg/L)	27.8	Temperature (Lab) (°C)	21.2
Hardness (mg CaCO3/L)	20.4	pH (Lab)	7.1
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200
Nitrate as N (mg/L)	0.183	Calcium (mg/L)	6.17
Nitrate-Nitrite as N (mg/L)	0.183	Iron (mg/L)	<0.200
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	1.21
Total Dissolved Solids (Lab) (mg/L)	78.6	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00

Slow/Shallow	1
ast/Shallow	2
Slow/Deep	2

Macroinvertebrate Metrics		Habitat Assessment Metric	
Total Taxa Richness	43	Embeddedness +	37
EPT Taxa Richness	18	Sediment Deposition	
Beck's Index	25	Condition of Banks	31
Shannon Diversity Index	3.04	Vegetative Protection	
Hilsenhoff Biotic Index	4.30	Habitat Assessment Score (Overall)	199
Percent Sensitive Individuals	35.6		
Index of Biotic Integrity	80.5		

Embeddedness +	37
Sediment Deposition	
Condition of Banks	31
Vegetative Protection	
Habitat Assessment Score (Overall)	199

Site Summary Sheet: TOBYCR14

Stream Name	Tobyhanna Creek	Latitude	41.082791
Date Sampled	4/30/2025	Longitude	-75.583083
Time Sampled	8:05 AM	Municipality	Tobyhanna
Drainage Area (sq mi)	82.6	Habitat Type	Riffle/Run
Location Description	50m east of Rt. 115 bridge near A	ustin T. Blakeslee Natural Are	

Field Measurements*No field Chem as YSI probe was broken pH Dissolved Oxygen (%) Conductivity (µS/cm) Total Dissolved Solids (mg/L) Temperature (°C)

Lab Chemistry Results			
Total Organic Carbon (mg/L	4.52	Phosphorus as P (mg/L)	<0.0250
Chloride (mg/L)	30.3	Temperature (Lab) (°C)	20.8
Hardness (mg CaCO3/L)	20.5	pH (Lab)	7.24
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200
Nitrate as N (mg/L)	0.136	Calcium (mg/L)	6.19
Nitrate-Nitrite as N (mg/L)	0.136	Iron (mg/L)	<0.200
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	1.24
Total Dissolved Solids (Lab) (mg/L)	80.0	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0
Total Kjeldahl Nitrogen (mg/L)	0.592	Biochemical Oxygen Demand (mg/L)	<3.00

Slow/Shallow	0
Fast/Shallow	2
Slow/Deep	2
Fast/Deep	2

otal Taxa Richness	42
EPT Taxa Richness	22
Beck's Index	34
Shannon Diversity Index	2.71
lilsenhoff Biotic Index	4.79
Percent Sensitive Individuals	24.8
ndex of Biotic Integrity	84.5

Macroinvertebrate Metrics

Embeddedness +	38
Sediment Deposition	
Condition of Banks	20
Vegetative Protection	
Habitat Assessment Score (Overall)	170

Site Summary Sheet: TUNKCR03

Stream Name	Tunkhannock Creek	Latitude	41.059541
Date Sampled	4/21/2025	Longitude	-75.552735
Time Sampled	11:15 AM	Municipality	Tunkhannock Creek
Drainage Area (sq mi)	21.7	Habitat Type	Riffle/Run
Location Description	160m north of Tunkhannock Fishing	Association Parking area.	

Lab Chemistry Results				
Total Organic Carbon (mg/L	5.52	Phosphorus as P (mg/L)	<0.0250	
Chloride (mg/L)	11.3	Temperature (Lab) (°C)	18.5	
Hardness (mg CaCO3/L)	8.47	pH (Lab)	6.41	
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200	
Nitrate as N (mg/L)	0.130	Calcium (mg/L)	2.04	
Nitrate-Nitrite as N (mg/L)	0.130	Iron (mg/L)	0.221	
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	0.819	
Total Dissolved Solids (Lab) (mg/L)	37.5	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0	
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00	

Habitat Sampled		
Slow/Shallow	1	
Fast/Shallow	1	
Slow/Deep	2	
Fast/Deep	2	

Macroinvertebrate Metrics		Habitat Assessment Metric	
Total Taxa Richness	41	Embeddedness +	34
EPT Taxa Richness	17	Sediment Deposition	
Beck's Index	33	Condition of Banks	32
Shannon Diversity Index	3.00	Vegetative Protection	
Hilsenhoff Biotic Index	4.07	Habitat Assessment Score (Overall)	189
Percent Sensitive Individuals	36.7		
Index of Biotic Integrity	82.1		

Embeddedness +	34
Sediment Deposition	
Condition of Banks	32
Vegetative Protection	
Habitat Assessment Score (Overall)	189

Site Summary Sheet: TUNKCR04

Stream Name	Tunkhannock Creek	Latitude	41.029496
Date Sampled	4/21/2025	Longitude	-75.451954
Time Sampled	9:30 AM	Municipality	Tunkhannock
Drainage Area (sq mi)	8.81	Habitat Type	Low Gradient
Location Description	Off Fire Ln. near Bethlehem Water	Authority dam	

Field Measurements* No field Chem as YSI Probe was broken		
рН		
Dissolved Oxygen (%)		
Dissolved Oxygen (mg/L)		
Conductivity (µS/cm)		
Total Dissolved Solids (mg/L)		
Temperature (°C)		

Lab Chemistry Results				
Total Organic Carbon (mg/L	5.93	Phosphorus as P (mg/L)	<0.0250	
Chloride (mg/L)	12.2	Temperature (Lab) (°C)	19.9	
Hardness (mg CaCO3/L)	7.65	pH (Lab)	7.08	
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200	
Nitrate as N (mg/L)	0.0643	Calcium (mg/L)	1.86	
Nitrate-Nitrite as N (mg/L)	0.0643	Iron (mg/L)	<0.200	
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	0.732	
Total Dissolved Solids (Lab) (mg/L)	35.0	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0	
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00	

Habitat Sampled		
Cobble/Gravel	2	
Snag	2	
СРОМ	2	
Submerged Aquatic Vegetation	2	
Sand/Fine Sediment	2	

Total Taxa Richness	26
EPT Taxa Richness	12
Beck4	16
Shannon Diversity Index	2.14
of Caddisfly Taxa	5
of Mayfly Taxa	5
ndex of Biotic Integrity	74.0

Pool Substrate Characterization +	32
Sediment Deposition	
Bank Vegetative Protection +	37
Bank Stability	
Habitat Assessment Score (Overall)	157

Site Summary Sheet: UPTNCR03

Stream Name	Upper Tunkhannock Creek	Latitude	41.103919	
Date Sampled	4/30/2025	Longitude	-75.49708	
Time Sampled	9:00 AM	Municipality	Tobyhanna	
Drainage Area (sq mi)	25.7	Habitat Type	Riffle/Run	
Location Description	Tunkhannock Fishing Association	clubhouse, from plunge pool	to cummings pool.	

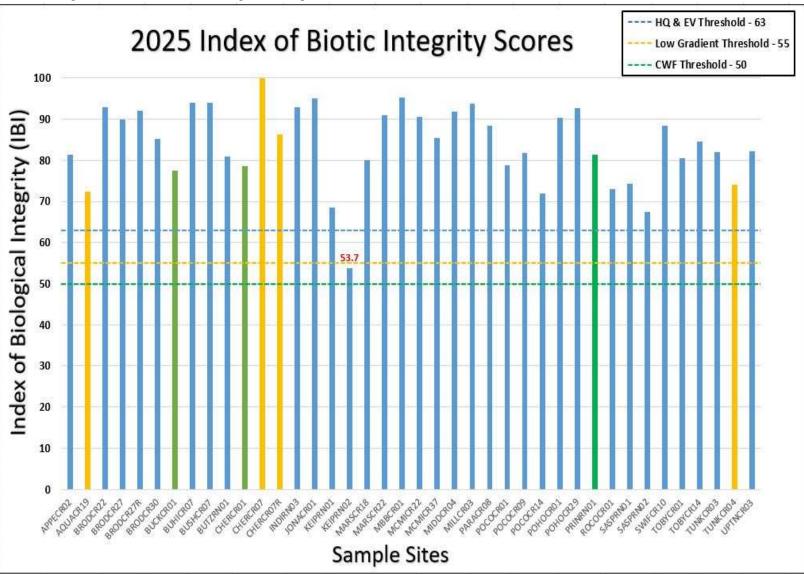
Field Measurements*No field Chem as YSI probe was broken		
рН		
Dissolved Oxygen (%)	0312	
Dissolved Oxygen (mg/L)		
Conductivity (µS/cm)		
Total Dissolved Solids (mg/L)		
Temperature (°C)		

Lab Chemistry Results				
Total Organic Carbon (mg/L	3.88	Phosphorus as P (mg/L)	<0.0250	
Chloride (mg/L)	48.5	Temperature (Lab) (°C)	21.4	
Hardness (mg CaCO3/L)	26.4	pH (Lab)	7.22	
Ammonia as N (mg/L)	<0.200	Aluminum (mg/L)	<0.200	
Nitrate as N (mg/L)	0.146	Calcium (mg/L)	7.91	
Nitrate-Nitrite as N (mg/L)	0.146	Iron (mg/L)	<0.200	
Nitrite as N (mg/L)	<0.0250	Magnesium (mg/L)	1.60	
Total Dissolved Solids (Lab) (mg/L)	108	Alkalinity to pH 4.5 (mg CaCO3/L)	<20.0	
Total Kjeldahl Nitrogen (mg/L)	<0.500	Biochemical Oxygen Demand (mg/L)	<3.00	

Slow/Shallow	1
Fast/Shallow	3
Slow/Deep	1
Fast/Deep	1

Macroinvertebrate N	letrics	Habitat Assessment I	Metrics
Total Taxa Richness	36	Embeddedness +	38
EPT Taxa Richness	18	Sediment Deposition	
Beck's Index	31	Condition of Banks	30
Shannon Diversity Index	2.73	Vegetative Protection	<u> </u>
Hilsenhoff Biotic Index	3.75	Habitat Assessment Score (Overall)	195
Percent Sensitive Individuals	38.0		
Index of Biotic Integrity	82.3		

Embeddedness +	38
Sediment Deposition	
Condition of Banks	30
+ Vegetative Protection	
Habitat Assessment Score (Overall)	195


Section VI. Summary and Recommendations

Additional information used in drawing conclusions (including field data sheets, habitat assessment sheets, and macroinvertebrate identification) is available upon request.

Locations Scoring below the Aquatic Life Use Impairment Threshold

The 2024 IBI scores for the county are shown below in Figure 5, with target lines for the Aquatic Life Use (ALU) impairment thresholds for streams designated as High Quality-Cold Water Fisheries and Exceptional Value (HQ/EV) (Threshold: 63), Low Gradient (Threshold: 55) and Cold Water Fisheries (CWF) (Threshold: 50). Sites scoring below the ALU attainment thresholds are listed below in Table 6. Additional criteria for CWF sites and sites with IBI scores below the ALU attainment thresholds are discussed in further detail on the following pages.

Figure 9: IBI Scores at Monitoring Sites Sampled in 2025

Additional Attainment Evaluations of Sites Designated CWF

The following evaluations are required to determine attainment in streams designated CWF, WWF, and TSF, regardless of the IBI (Shull & Pulket, 2023).

1. Are mayflies, stoneflies, or caddisflies absent from the sub-sample? These organisms are typically found in most healthy streams, therefore, if any or all of these orders are absent, it could indicate some sort of impact to the stream. Note that this question does not have to be applied to samples from larger streams and samples collected between June and September, but must be applied to small stream samples collected between November and May.

BUCKCR01

This sample has 9 members of Ephemeroptera (mayflies) with 50 individuals,
 5 members of Plecoptera (stoneflies) with 8 individuals, and 7 members of
 Trichoptera (caddisflies) with 68 individuals.

CHERCR01

This sample has 7 members of Ephemeroptera (mayflies) with 76 individuals,
 2 members of Plecoptera (stoneflies) with 7 individuals, and 8 members of
 Trichoptera (caddisflies) with 39 individuals.

PRINRN01

- This sample has 10 members of Ephemeroptera (mayflies) with 62 individuals, 5 members of Plecoptera (stoneflies) with 15 individuals, and 10 members of Trichoptera (caddisflies) with 42 individuals.
- Is the standardized metric score for the Beck's Index metric < 33.3 with the standardization metric score for the Percent Sensitive Individuals metric < 25.0?
 <p>This serves as a double check that the sample has substantial richness and abundance of the most sensitive organism.

BUCKCR01

o Becks's Index: 63.16

o Percent Sensitive Individuals: 37.99

CHERCR01

o Becks's Index: 68.42

o Percent Sensitive Individuals: **52.07**

PRINRN01

o Becks's Index: 81.58

o Percent Sensitive Individuals: 43.20

3. Is the ratio of Biological Condition Gradient (BCG) attribute 1, 2, 3 taxa to BCG attribute 4, 5, 6 taxa < 0.75 with the ratio of BCG attribute 1, 2, 3 individuals to BCG attribute 4, 5, 6 individuals < 0.75? This evaluates the balance of pollution tolerant organisms with sensitive organisms in terms of taxonomic richness and organismal abundance. This question must be applied to small-stream samples collected

between November and May, but does not have to be applied to samples from larger streams and samples collected between June and September.

BUCKCR01

BCG Taxa Ratio: 1.06BCG Individual Ratio: 0.65

CHERCR01

BCG Taxa Ratio: 1.29BCG Individual Ratio: 0.80

PRINRN01

BCG Taxa Ratio: 1.91BCG Individual Ratio: 0.66

4. Does the sub-sample show signatures of acidification year-round? The primary acidification signatures in a sub-sample include low mayfly abundance and low mayfly diversity (i.e., scarce mayfly individuals and few mayfly taxa), especially when combined with high abundance of *Amphinemura* and/or *Leuctra* stoneflies, occasionally combined with high abundance of Simuliidae and/or Chironomidae individuals. This information can be difficult to determine if low pH conditions are natural, so sampling water chemistry and/or fish communities can inform the assessment. With this protocol, PADEP will only list impaired sites that show persistent acidification signatures year-round (Shull & Pulket, 2023).

BUCKCR01

No. The total number of individuals in the Ephemeroptera Order (50) comprised greater than 5% of the subsample and the total number of *Amphinemura* (2) and *Leuctra* (0) genera comprised less than 25% of the subsample. The pH observed at this site on 4/23/2025 was 6.61.

CHERCR01

o No. The total number of individuals in the Ephemeroptera Order (76) comprised greater than 5% of the subsample and the total number of *Amphinemura* (1) and *Leuctra* (0) genera comprised less than 25% of the subsample. The pH observed at this site on 4/28/2025 was 7.58.

PRINRN01

No. The total number of individuals in the Ephemeroptera Order (62) comprised greater than 5% of the subsample and the total number of *Amphinemura* (7) and *Leuctra* (0) genera comprised less than 25% of the subsample. The pH observed at this site on 4/23/2025 was 7.47.

Keiper Run | KEIPRN02 (HQ-CWF)

Macroinvertebrate Summary

An overall lack of diversity in the macroinvertebrate community, a lack of pollution sensitive EPT taxa and approximately 72.93% of the individuals having pollution tolerance values of 4 or higher, resulted in an IBI score below the ALU threshold for HQ streams. Members of the Chironomidae family (PTV: 6) were found in the highest concentrations, at 33.62% of the subsample (77/229). A large population of Chironomidae in a subsample is a potential indicator of impacts associated with organic enrichment and/or sedimentation (Chalfont 2012). This is further supported with the Hilsenhoff Biotic Index score of 4.90, indicating that "some organic pollution [is] probable" (Hilsenhoff 1988).

Macroinvertebrate Metrics			
Total Taxa Richness	28		
EPT Taxa Richness	5		
Beck's Index	8		
Shannon Diversity Index	2.49		
Hilsenhoff Biotic Index	4.90		
Percent Sensitive Individuals	34.1		
Index of Biotic Integrity	53.7		

Observations

- Moderate sediment deposition was observed at this site, with large grained sediments filling most of the interstitial spaces in the streambed material.
 - O Both embeddedness and sediment deposition scored in the suboptimal category on the habitat assessment form, at 13/20 and 11/20 respectively, this reaches the imparement threshold of 24 or less for the habitat assessment couplet of embeddedness + sediment deposition.
 - O Condition of banks scored in the suboptimal category on the habitat assessment form at 14/20. Vegetative protection scored in the marginal category on the habitat assessment form at 10/20. This reaches the imparement threshold of 24 or less for the habitat assessment couplet of condition of banks + bank vegetative protection.
- Land use surrounding the headwaters of Keiper Run have been altered by development.
- In 2019, bank erosion resulted in a large sediment pollution event upstream of the SR 115 Bridge over Keiper Run. Evidence of the discharge is still visible downstream from the road. Parts of the channel are continuing to erode upstream of the bridge.
- Approximately 0.25 miles upstream of the sample site, Keiper Run flows through a low gradient (~1% slope) wetland complex before prevalence of higher gradient riffle/run habitat begins. Low gradient wetlands are optimal habitat for Chironomidae and other filter feeding macroinvertebrates.

Highlights for 2025

Macroinvertebrate populations found at the sites listed in the table below were some of the most diverse and pollution sensitive communities found in the county. The IBI numbers are highlighted in green on the site summary sheets for these sites.

Table 6: Sites with exceptional macroinvertebrate communities

Waterbody	Site ID	Index of Biotic Integrity
Brodhead Creek	BRODCR22	92.9
Brodhead Creek	BRODCR27	90
Brodhead Creek	BRODCR27R	92.1
Buckhill Creek	BUHICR07	93.9
Bushkill Creek	BUSHCR07	94
Butz Run	BUTZRN01	96.6
Cherry Creek	CHERCR07	100
Indian Run	INDIRN03	93
Jonas Creek	JONACR01	95.1
Marshalls Creek	MARSCR22	91
Middle Branch Brodhead Creek	MBBRCR01	94.5
McMichael Creek	MCMICR22	90.5
Middle Creek	MIDDCR04	91.8
Mill Creek	MILLCR03	93.7
Pohopoco Creek	POHOCR01	90.3
Pohopoco Creek	POHOCR29	92.8

Figure 13: Site ID BUSHCR07

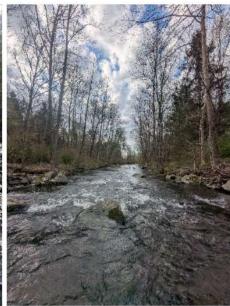


Figure 14: Site ID BRODCR27

Sites Scoring Below IBI Threshold

The Site KEIPRN02 was the only site scoring below the ALU Impairment threshold for 2025. The IBI score is highlighted in red on the site summary sheet.

Table 7: Sample Site Scoring Below the ALU Impairment Threshold

Stream Name	Site ID	Ch. 93 Designation	IBI Score	ALU Impairment Threshold
Keiper Run	KEIPRN02	HQ-CWF	53.7	63

2024-2025 Comparison of Sites Scoring Below the Aquatic Life Use Threshold

In 2024 four watercourses Keiper Run, Pocono Creek, Sand Spring Run, and Tunkhannock Creek scored below the Aquatic Life Use (ALU). The 2025 report indicates a notable improvement in water quality at three of the sites, Pocono Creek, Sand Spring Run, and Tunkhannock Creek which have now exceeded the Aquatic Life Use (ALU) threshold. This marks a promising step forward in the health of our local streams and reflects the positive impact of ongoing conservation efforts.

However, while these results are encouraging, continued monitoring is essential to confirm whether this improvement represents a lasting trend rather than an outlier sampling season. Ongoing studies will help us better understand the factors driving these changes and guide future restoration and protection efforts across the watershed.

Table 8: Sites that scored below the ALU 2024 to 2024 comparison

		2024 Index of	2025 Index of
Waterbody	Site ID	Biotic Integrity	Biotic Integrity
Keiper Run	KEIPRN02	53.7	53.7
Pocono Creek	POCOCR14	61.3	71.9
Sand Spring Run	SASPRN02	58.5	67.5
Tunkhannock Creek	TUNKCR04	51.7	74.0

Recommendations

- KEIPRN02 has scored below the ALU impairment threshold six years in a row. Due to the consistently low IBI score and historic issues with a sample site upstream of KEIPRN02, we referred this site to DEP in 2023. DEP recommended to reincorporate the upper sampling location (KEIPRN01) which was done in the 2024 study. Continuous monitoring of both of these sites is recommended to reach a better understanding of what is occurring at the sites. The data was submitted to DEP for 2024 and will be submitted again for 2025.

2020 IBI: 33.5
2021 IBI: 34.5
2022 IBI: 53.7
2023 IBI: 48.1
2024 IBI: 53.7
2025 IBI: 53.7

- The bank stabilization and instream restoration work along the northern reach of Sand Spring Run has now been successfully completed. This project included the planting of over 300 trees, the creation of more than 300 feet of riparian buffer, and the installation of three distinct sections of fish habitat. These improvements are designed to enhance stream stability, improve water quality, and support aquatic life. The Monroe County Conservation District hopes to continue this project with future restoration efforts along Sand Spring Run. Continued work will help further improve the health of the stream and the overall quality of the watershed downstream.
- The addition of flow and depth measurements to monitor discharge at sample sites year to year is recommended. This will provide us with an additional variable to assess when reviewing our results.
- Some of the samples in our study had a high abundance of species from the *Prosimulium* genus and Chironomidae family. The large proportion of these species in each sub-sample can skew results in a negative direction. *Prosimulium* sp. commonly have a larval "boom" in the spring sampling window. The high abundance of those individuals isn't necessarily representative of the community year round, it may just be a seasonal variation. Unlike *Prosimulium sp.*, Chironomidae have a high pollution tolerance value and are a common indicator of impairment. It's particularly important at sites with a high abundance of Chironomidae to determine if their population is evidence of impairment or a seasonal condition. It was determined that moving the sampling window back to the second to third week of April may help determine if these large populations are from a larval "boom" or if they are an accurate representation of what is present year round. Additional samples at select sites in November could also help determine whether or not these are seasonal variations in the community or if this is an accurate representation of what is present year round.

Section VII. References

- 25 Pa. Code § 93.7. Specific water quality criteria.
- Chalfant, B. (2012). A Benthic Index of Biotic Integrity for Wadeable Freestone Streams in Pennsylvania. Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania. Retrieved on October 21, 2020 from http://files.dep.state.pa.us/Water/Drinking%20Water%20and%20Facility%20Regulation/WaterQualityPortalFiles/Technical%20Documentation/freestoneIBImarch 2012.pdf
- Hilsenhoff, W. L. (1988). Rapid Field Assessment of Organic Pollution with a Family-Level Biotic Index. Journal of the North American Benthological Society, 7(1), 65–68. https://doi.org/10.2307/1467832
- Lenntech B.V. (2020). Calcium and Water: Reaction Mechanisms, Environmental Impacts and Health Effects. Retrieved October 19, 2020, from https://www.lenntech.com/periodic/water/calcium/calcium-and-water.htm#:~:text=Rivers%20generally%20contain%201%2D2,1500%20ppm%20(dry%20mass)
- Ohrel, R. L., Register, K. M. (2006, March). *Volunteer Estuary Monitoring; A Methods Manual Second Edition*. Retrieved October 20, 2020, from https://www.epa.gov/sites/production/files/2015-09/documents/2007_04_09_estuaries_monitoruments_manual.pdf
- PADEP. (2024). *Integrated Water Quality Report 2024*. Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania. Retrieved on October 8, 2024 from https://www.dep.pa.gov/Business/Water/CleanWater/WaterQuality/IntegratedWatersRep ort/Pages/2024-Integrated-Water-Quality-Report.aspx
- PADEP. (2023 August 18). *Existing Use Classification*. Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania. http://files.dep.state.pa.us/Water/Drinking%20Water%20and%20Facility%20Regulation/WaterQualityPortalFiles/Existing%20Use/EU%20table%20list.pdf
- Pennsylvania State Extension. (2020). *Marvelous Macroinvertebrates*. Retrieved on October 21, 2020 from https://extension.psu.edu/marvelous-macroinvertebrates
- Shull, D. R. et al. (2023). Water Quality Monitoring Protocols for Streams and Rivers.

 Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania.

 Retrieved on October 15, 2023 from

 https://files.dep.state.pa.us/Water/Drinking%20Water%20and%20Facility%20Regulation/WaterQualityPortalFiles/Technical%20Documentation/MONITORING BOOK.pdf
- Shull, D. R. et al. (2023). *Assessment Methodology for Rivers and Streams*. Pennsylvania Department of Environmental Protection, Harrisburg, Pennsylvania. Retrieved on

- October 15, 2023 from https://files.dep.state.pa.us/Water/Drinking%20Water%20and%20Facility%20Regulation/WaterQualityPortalFiles/Methodology/2023%20Methodology/ASSESSMENT_BOOK_2023.pdf
- Stroud Water Research Center. (2020). *What Are Benthic Macroinvertebrates*. Retrieved on October 21, 2020 from https://stroudcenter.org/macros/
- USEPA. (1976, July). *Quality Criteria for Water*. EPA 440-9-76-023. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 20, 2020, from https://www.epa.gov/sites/production/files/2018-10/documents/quality-criteria-water-1976.pdf
- USEPA. (1993, August). *Method 351.2, Revision 2.0: Determination of Total Kjeldahl Nitrogen by Semi-Automated Colorimetry*. Pennsylvania Department of Environmental Protection, Environmental Monitoring Systems Laboratory. Retrieved October 19, 2020, from https://www.epa.gov/sites/production/files/2015-08/documents/method_351-2_1993.pdf
- USEPA. (2012, March 6). *Water: Monitoring and Assessment 4.3 Intensive Stream Biosurvey*. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 19, 2020, from https://archive.epa.gov/water/archive/web/html/vms43.html
- USEPA. (2012, March 6). *Water: Monitoring and Assessment, 5.9 Conductivity*. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 19, 2020, from https://archive.epa.gov/water/archive/web/html/vms59.html
- USEPA. (2016). A Practitioner's Guide to the Biological Condition Gradient: A Framework to Describe Incremental Change in Aquatic Ecosystems. EPA-842-R-16-001. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 26, 2020 from https://www.epa.gov/sites/production/files/2016-02/documents/bcg-practioners-guide-report.pdf
- USEPA. (2016, August 16). *National Aquatic Resource Surveys; Indicators: Conductivity*. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 19, 2020, from https://www.epa.gov/national-aquatic-resource-surveys/indicators-conductivity
- USEPA. (2018, December 3). Causal Analysis/Diagnosis Decision Information System (CADDIS) Vol 2 Sources, Stressors, and Responses. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 19, 2020, from https://www.epa.gov/caddis-vol2
- USEPA, Office of Water. (1986, May 1). *Quality Criteria for Water*. EPA 440/5-86-001. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 20, 2020, from

- https://www.epa.gov/sites/production/files/2018-10/documents/quality-criteria-water-1986.pdf
- USEPA, Office of Water. (1988, February). *Ambient Water Quality Criteria For Chloride-1988*. EPA 440/5-88-001. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 20, 2020, from https://www.epa.gov/sites/production/files/2018-08/documents/chloride-aquatic-life-criteria-1988.pdf
- USEPA. Office of Water. (2018, December). Final Aquatic Life Ambient Water Quality Criteria for Aluminum 2018. EPA-822-R-18-001. U.S. Environmental Protection Agency, Washington, DC. Retrieved October 20, 2020, from https://www.epa.gov/sites/production/files/2018-12/documents/aluminum-final-national-recommended-awqc.pdf
- USGS, Kramer, Deborah A. (2001). *Magnesium, its Alloys and Compounds*. U.S. Geological Survey Open-File Report 01-341. U.S. Department of Interior, Washington, DC. Retrieved October 20, 2020, from https://pubs.usgs.gov/of/2001/of01-341/of01-341.pdf
- USGS. (2020, October 24). National Water Information Systems. U.S. Department of Interior, Washington, DC. Retrieved on October 24, 2020 from https://waterdata.usgs.gov/nwis
- USGS Water Science School. (n.d.). *Hardness of Water*. U.S. Department of Interior, Washington, DC. Retrieved October 20, 2020, from https://www.usgs.gov/specialtopic/water-science-school/science/hardness-water?qt-science_center_objects=0#qt-science_center_objects
- Whitehead, Paul. (2020, February 6). *Total Organic Carbon (TOC) and its Measurement*. Retrieved October 20, 2020, from https://www.elgalabwater.com/blog/total-organic-carbon-toc